CGBIA e

Cobia™ v0.3

Ul Developer's Guide

October 18, 2007

(rev-a)

BStillSecure”™ = v

www.stillsecure.com superior CO 80027 F (303) 381-3880

© 2006 - 2007 StillSecure® All rights reserved.

CGBIA

Copyright © 2006-2007StillSecure. All Rights Reserved.

StillSecure reserves all rights under its copyright, including, without limitation, that no part of this
documentation may be reproduced, modified or distributed, in any form or by means electronic,
mechanical , photocopying, or otherwise, without prior written permission of StillSecure.

All rights reserved. StillSecure, StillSecure logo, Strata Guard, VAM, Safe Access, and Cobia are
trademarks or registered trademarks of StillSecure. Additional StillSecure trademarks or registered
marks are available at http://www.stillsecure.com/company/copyright.php. All other brands, company
names, product names, trademarks or service marks referenced in this material are the property of
their respective owners, who may or may not be affiliated with, connected to, or sponsored by
StillSecure.

StillSecure's trademarks, registered trademarks or trade dress may not be used in connection with
any product or service that is not the property of StillSecure, in any manner that is likely to cause
confusion among customers, or in any manner that disparages or discredits StillSecure. The products
and services described in this material may not be available in all regions.

This StillSecure® software product includes open-source software components. StillSecure conforms
to the terms and conditions that govern the use of the open source components included in this
product. Among the open source components included in this software product is Nessus™. Nessus™
is a trademark of Tenable Network Security, Inc. StillSecure is not affiliated with, connected to, or
sponsored by Tenable Network Security, Inc. Users of this StillSecure product have the right to access
the open source code and view all applicable terms and conditions governing open source component

usage. Visit http://www.stillsecure.com/opensource to access open source code, applicable terms and
conditions, and related information.

BStillSecure™*

www.stillsecure.com 5

© 2006 - 2007 stillSecure® All rights reserved.

http://www.stillsecure.com/opensource
http://www.stillsecure.com/opensource
http://www.stillsecure.com/opensource
http://www.stillsecure.com/company/copyright.php

(rev-a) 3

Table of contents

UI Developer's GUIde.....uiiiiiiiiiiiiiiic i e enaees 1
a8 00 =Y < R 5
What the Cobia™ UI Developer's GuUide iS....coeeeeeeeeeeeiieiiienn.. 5
Who Should Use the UI Developer's Guid€....ovveevieiiiiiiinnnnnn. 5
How this Guide Fits in the Cobia Architecture......ccoeeeiiiiennn.... 5
C1 [0 1Y | A YA 7
Relationship with UT DeSigN...uuueeeeeeeeeeeeeeeeniiiiiiiiiiiiiiireeeeeeeeess 8
DeSignN REVIEW. uuuuueeiiiiiiiiiiiiieteeeeeeeeeeenssssssiisisiiiiiseeeeeeeeees 8
Module Screen FIOWS...ouuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiennnnnnnnn.. 9
Screen Components (OVErvVIieW)..ooeeeeeuueeeieeeeeiiieiiiiiannnnns 10
Dashboard Screens (OVervieW).....uveeeeeeiiiiiineeiiiiiineeeiennnn.. 12
Multi-Content Screens (OVEervieW)..oooueeeeeeeeeeeeeeeeeeesnnnnnnnnn, 14
Fullscreen Screens (OVErvVIieW)..oooeeeeeeeeeeeeeeeiieiiieiiaiiiannnnen. 16

[[oYe [81 (ST Kol a I T T TT 19
PlannNing SCreeNS. e ieiiiiiiii ittt ieiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeennnns 20
Basic UI Design GuidelineS....uuuiiiiiiieeniiiiiiiiiiiiiiiiiiiieeeennnns 20
Example: Firewall Modul€....cooiiiiiiiiiiiiiiinniiiiiiiiiiiiiiiiiennn. 20
Example: DHCP Modul€....ooeeiieeeeeiieiiiiiiiiiiiiiiiieenneeeenn.. 22

UI Development StepS...oeeeeiiiieeieeeeeeeeeeiiiiiiiiiiiiiieeeeeeeeeess 23
Screen Model and API......coiiiiiiueeeeiiiiieiiiiiiiiiiiiieeeeeeieeeeeeesns 24
Screen ComMpPONENES. e euiiiieiiiiiiiiiiiiiiiieiiiiiiiieiiiiieenniiniiees 24
Yo g =1=] o B A o 1< T 24
Yol g =1=] A M M (016 (=TT 25
The Screen API....eeeeiiiiiieiiieeeeeeeeeissiiaiiiieeieeeeeeeeeeeeeennannns 25
Basic Information.....eeeeeeeeeiiiiiiiiiiiiiiiieeiieiieiiiiiiiiiiiinnnns 26
Screen Hierarchy MethodS......cooeeeeeeeeieeiiiiiiiiiiiiinneeeeenn.. 27
Screen Life Cycle MethodS..ooeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnn.. 27
The Dashboard API....cuuuuiinnn, 28
The Update Screen API....covveeiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnn. 29
The Multi-Content Screen API......oovveeeiiiiiiieieeeeenieneeennnnnn... 30
The MultiContentScreen Methods.......eeeeieieiiiiiiieeeeennnnn. 31
The Screen MethodS...eueeiiiiiiiiiiiiieeiieeeeeiieiiiiiiiiinneeeeeen. 31
The UpdateScreen MethodS.....ovvvveeeiiiiiiiiiiiiiiiiiiiiieennnnns 31
Content Page API..iiiuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieensiiiiieinnnnnn, 31
Breadcrumbs and Confirmation.....couveeeeeeeeeeennniiiiiiiiiiiiinnn.. 32
Multi-Content SCreenS..ooeuuiieeeeeeeeeeeeeeiiiiiiiiiiiiiiiireeeeeeeeeeness 34
Purpose of Multi-Content Screens........oooeiiiiieeneeeeeeeiiinnn... 34
AP REVIEW. i tiiiiiiiieeeeettetetetiieiisisssssseeeeeeeeeeeeeiesssssnnnneses 34
Creating Multi-Content Screen Backing BeanS.........ccevvuee.... 34
Configuration PagesS.....uuuueeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnniinnnnnn. 36

© 2006 - 2007 stillSecure® All rights reserved.

o | o
L |
p — [

(rev-a) 4

The Purpose of Configuration Pages.......cceeeeeeeeniiiiiiiiinnnn... 36
Elements of a Form Field.....ooviiiiiiiiiiiineiiiiiiiiiiiiiiiiiiiiieennns 36
Screen Text and Internationalization Support.....cceeeeeeennn.... 37
Other Text MeSSageS. . euuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieenens 37
Supporting Substitution......eeeeeeiiiiieeeeiiieeeeeiiiiiiiiiiiiiien... 37
Supporting Multiple LanguagesS...ooeeeeeiiiiiiieeieeeiiieeennnnnnn.. 38

Yo g=1=] a1l =1V 10 00) o [P 38
Content BUttONS. . uuueeeiiiiiiiiiiiiiiieiiiiiiieeiiiiiieineiiiiieenniinieees 39
Form Layout TechniquesS...ooeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiennn. 41
Creating SectionS..u.eeiiieieiiiiiiiiiiiiiiieiiiiiiieiiiiiiieeeniinieees 41
Domain Modeling ReVIeW....uvveeeeeeieeineneiiiiiiiiiiiiiiiiieeeeeeeees 42
Entities....ouueeeeeiiiiiiiiiiiiiiieeeeeeeeeeeeiiiiiiiiiiiiiiiiieeieeeeeeess 42
Primitive TYPeS. . iuueiiiiiiieiiiieiiiiiniiieriaiiesiienieiessseesnseenss 42
Enumerated TypPeS..uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieeiiiiiiiiiiiiinnn, 42
Single-String Representation TypeS......cvvveeeiiiiiinnnnnnnnnn... 42
Multiple-String Representation TypesS......cvvvvivivennnnnnnnnnn... 42
Data Collection TYPeS.....evueeeeeereniiiiiiiiiiiiiiieeeeeeeeeeeennnnns 42
UNION TYP@S. s tttteeetieeeeeieetteeesaseeeeessasseeeeessessseesssseeeensns 43
Dealing with EntitieS...ceeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnn.. 43
Dealing with Primitive Data......ceeeiiiiiiiiiiiiiiiiiiiieeiiiennnnnnnn.. 43
Dealing with Enumerated TypeS...oeeeeeeiiiiiiiiiiiieeeiiiiennnnnnnnn.. 43
Dealing with Single-String Representation Types................. 43
Dealing with Multiple-String Representation Types............... 43
Dealing with Data CollectionS......eeeeeeeiiiiiiiiiieieeeeeeeenennnnnn.. 43
Dealing with Union TYPeS...uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieenennns 43
View and Search PageS...oeeeeiiennns 44
Reporting PagesS..uueeiiiiieiiiiiiiiiiiiiiiieniiiiiiiiniiiiiieesnisseeeeennnnn, 45
[(=] o = Lo (<1 46
Dashboard Screens......ovvvveeeeeeiiiiiiiiiiiiiiiieeeeeeeieeeeesnnisnnann, 47
Dynamic Behavior using AJAX . .iiiieeeeeeeeeeeeeeeiiissiiiiiiieeeeeen, 47
Client-side Screen Behavior......oeeeiieeiiiiiieiiiiiiiiiiiiiiiiiieieennns 48
Including Raw HTML Content....eeeeiiiiiiiiiiiiiiiiieieeiiinnnnnnnnnnn... 49

© 2006 - 2007 stillSecure® All rights reserved.

G

Purpose (rev-a) 5

Purpose

What the Cobia™ Ul Developer's Guide is

The Cobia UI Developer's Guide is a comprehensive document describing the
following:

« The relationship between the user interface (UI) design and screen
components

« The model and application programming interface (API) of screen components
« The relationship between configuration screens and the Domain model

* How to create JavaServer™ Faces (JSF) converters

+ How to develop screen backing beans

* How to create JSF validation methods

* How to create client-side screen behavior

*+ How to integrate with AJAX in Dashboards

* Including raw HTML content in screen JSPX files

The Cobia UI Developer's Guide has been designed so that a Cobia module developer
will be able to understand screen construction and code manipulation methods easily
once they review the basic code structure and the cascading style sheet (CSS) that
controls the layout.

For this release of the Style Guide, StillSecure® is focusing on the following:

« Explaining screen construction using the Cobia UI components

« Explaining how to connect screen components to the server-side backing
beans and domain model

Who Should Use the Ul Developer's Guide

This guide is intended for any developer who is looking to create the user interface for
a Cobia module. You must have a strong understanding of the Java EE web tier model,
specifically the JSF framework. You should also have a strong understanding of
JavaScript (JS) and a moderate (but not detailed) understanding of XHTML and CSS.

How this Guide Fits in the Cobia Architecture

Figure 1: The Cobia Architecture shows a high-level view of the Cobia architecture.

© 2006 - 2007 stillSecure® All rights reserved.

Purpose (rev-a) 6

Cobia Appliance
‘ Ul < > Domain
Model

Manager

4

Y L5 £
Meta Data
Data base

Figure 1: The Cobia Architecture

There are four major tiers to a Cobia module:

« UI

+ Domain model
 Manger

+ Service

The service tier is not formally part of the Cobia module; usually a service is an
existing operating system (OS) service (such as dhcpd, firewall, and so on) or third-
part utility (such as WiFi or Snort™). The other three tiers reside within the Java™
application that makes up your module code. However, you will note that the UI
bubble extends between the Cobia appliance box and the user's desktop; this indicates
that some of the functionality of the UI exists on the user's web browser, such as any
JavaScript™ code required by the UI for your module.

This document focuses on the UI tier of a Cobia module. In the future there will likely
be Developer's Guides for the other tiers, but for now please read the Cobia-Module-
SDK document for information about the Domain model and Manager tier
development.

Current Cobia documents can be downloaded from the Web site

(http://cobia.stillsecure.org/?q=node/29) or you can request them by following the
instructions on the Web site.

© 2006 - 2007 stillSecure® All rights reserved.

http://cobia.stillsecure.org/?q=node/29
http://cobia.stillsecure.org/?q=node/29
http://cobia.stillsecure.org/?q=node/29

G

Glossary (rev-a) 7

Glossary
This section describes the terms used in this document.
Term Definition
screen A screen is a conceptual unit of work for the user. One screen

generates one breadcrumb.

multi-content screen

Is a unit of work with multiple content pages. Navigation
between pages is performed using the tabs in the left column
of a two-column layout.

page A single conceptual view into some chunk of information.

component A programming unit. A component might be large such as a
complete screen or small such as a single UI element.

widget A synonym for component, but typically refers to a single Ul
element such as a text field.

module A cohesive collection of functionality that is usually associated
with a single service. A module contains one or more
managers.

manager A cohesive collection of functionality that executes Cobia Jobs.

entity A complex object that has some form of fixed identity that is

defined by the context of the domain itself.

value object

A relatively simple object that does not have identity; that is,
the equality of two value objects is solely defined by the
value(s) contained in the two objects.

job

A single activity of a manager. Typical jobs include, retrieving
the Domain model for a manager, setting a new model
configuration, starting and stopping a service, performing
searches on dynamic data of the service (such as log file
entries), and so on.

© 2006 - 2007 StillSecure®

All rights reserved.

CGBIA

Relationship with UI Design (rev-a) 8

Relationship with UI Design

This section describes the relationship between the Cobia UI Design and UI
Development. In particular, this section provides an overview of the three primary UI
design screen types and how these are implemented using the Cobia UI Framework.

Design Review

As described in the Cobia_Style_Guide document, there are currently four screen
types:
« Dashboard
» Two-column screen (also called a Multi-Content Screen in the Ul Framework)
» Full screen
« Confirmation screen

These screen types define the templates you will use to create your module and help
with your module architectural flow. Figure 2 shows the four types of screens that
have been designed for Cobia.

CGBIA uessssmes (G B)orout (@re CGBIA R
(e el o w D] (e eSO WD J
‘ % e [Resource Usage » S z‘;onnnms}mm @= (_,(‘)-);._“\
inutesy 030 (1) 0.06 (5) 0.02 (25) Ebsrostucmadiace:
ol | " —=5

- -

R E ! = .

. by S

s - o

Lt A
s Al
CGBIA e e D CcGBIA

[‘y\%}ﬁ)) "“u;w i@, % S ™ WD] [Before continuing... }

)

o

& Etemet interface
i /

Figure 2: The Four Cobia Screen Types

As a module developer, you will only create screens of the first three types. You will
not be responsible for creating Confirmation screens (and other internal screens, such
as the login screen); these are provided by the Cobia framework.

© 2006 - 2007 stillSecure® All rights reserved.

Relationship with UI Design (rev-a) 9

Module Screen Flows

The entry point to any module is the Dashboard and there most be one and only one
of these screens. From the Dashboard the user can navigate to configuration,
reporting, and monitoring screens.

Figure 3 provides a screen flow from the Firewall module (version 1.0).

EditFirewallRule

figureFirewall

EditFinalFirewallRule

ViewFirewallRules

Dashb i
ashboa EditSnatRule

ViewNatRules

EditDnatRule

MonitorLog
Figure 3: Firewall Module Screen Flow

From the Dashboard, the user may select to configure the firewall service or to
monitor the firewall logs. The ConfigureFirewall screen is a multi-content screen which
has two content pages:

« ViewFirewallRules

+ ViewNatRules
From these two pages you can add or edit specific rules.

Figure 4 provides another example; this time from the Admin module.

© 2006 - 2007 stillSecure® All rights reserved.

G

FO—+O

Relationship with UI Design (rev-a) 10

Dashboard ConfigureSystem
GeneralSettings
ViewInterfaces EditPhysicalInterface EditVIF

EditHost

ViewNetworksHosts

EditNetwork

FO

EditPasswords

Figure 4: Admin Module Screen Flow

From the Dashboard, the user can select only the main configuration screen:
ConfigureSystem. This is a multi-content screen with four content pages:

» GeneralSettings

« Viewlnterfaces

« ViewNetworksHosts
« EditPasswords

From the ViewlInterfaces page, the use can edit an Ethernet interface using the
EditPhysicallnterface screen (a Full screen type); from this configuration screen the
user can add and edit a virtual interface (VIF) using the EditVIF screen, and so on.

Screen Components (Overview)

The term component is overused in the software industry. In this document, I will use
the term in two ways. First, complete screens (or content pages) are components.
Second, individual UI elements are also called components. Where the context is not
obvious I will qualify the term: either screen component or UI component. Another
common term for a Ul component is widget. Widgets are typically atomic elements;
screens are never referred to as widgets.

Each Cobia screen is made up of two programming elements: a JSPX page and its
JavaServer Faces (JSF) backing bean (see Figure 5).

© 2006 - 2007 stillSecure® All rights reserved.

Relationship with UI Design (rev-a) 11

O

ViewInterfaces
ViewInterfaces. jspx ViewInterfaces.class
<jsp> :
</jsp>

Figure 5: Screen Component Composition

This UI Developer's Guide describes the fundamentals of building both of these
elements. The JSPX is created with a set of Ul components (entered as JSP tags) from
the Cobia UI component library. The JSF backing bean is a Java class that implements
the Cobia Screen interface; typically, you would use one of the built-in abstract classes
to subclass. More on this in the following sections.

This document assumes that you have a fundamental knowledge of JavaServer Faces
technology which is the basis of building Cobia screens.

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Relationship with UI Design (rev-a) 12

Dashboard Screens (Overview)

The primary purpose of a Dashboard screen is to present the status of the module's
service. This is usually done with summary data and graphs.

Figure 6 shows an example Dashboard screen from the Admin module.

C@B | A jack's account @reiresh @jog out @help
G = I — ’ 5 \ 7: N
6l S | / - ‘ 4) \ j A /
” 1
Resource Usage
Configure
system CPU Usage (last 24 hours) System uptime: 3 days 10 hours 23 minutes

100%

Load averages (minutes): 010 (1) 0.06 (5) 0.02 (15)

Generate w

reports © CPU usage: B | 55%
= Physical memory usage: :‘] 98%
8%

¥irtual memory usage: & | 68%

4 16 18 20 22 0 2 4 6 8 10 12

Jusr usage: g | 35%
Page Faults per sec (last 24 hours)
200 ’ fvar usage: [83%
175 Jvarflog usage: i | 63%
150
W16 18 2 2 0 2 4 6 8 10 12
\ J

Figure 6: Example Dashboard Screen (Admin Module)

The section frame on the left includes iconic links to the configuration screen and
reports manager. The section frame on the right contains the summary information
for the Admin module: usage graphs and summary data. These UI components
provide dynamic data using AJAX controls to make periodic requests to the Cobia
appliance to retrieve up-to-date information and graphs.

Below is a template of the JSPX structure of a typical Dashboard:

1. <jsp:root

2. xm ns:jsp="http://java. sun. com JSP/ Page' version='2.0'
3. xm ns: f="http://java. sun. conlj sf/core'

4. xm ns: h="http://java. sun.conljsf/htm"

5. xm ns:c="http://cobia.stillsecure.org/jsf'>

6. <jsp:directive.page content Type="text/htm ; charset=ISO 8859-1" />
7. <f:view>

8. <c:screen val ue="#{ BEAN- NAME} ' >

9. <h:formid="x"'>

10.

11. <c:division id=" header'>

12. <c:logo />

13. <c: appl i cati onNavi gation />

14. <c:screenNavi gation id="accessNav' />

15. </ c: divi si on>

16.

17. <c:division id='container'>

18.

19. <c:screenAnchor nane=' nodul es' for='accessNav' />

© 2006 - 2007 stillSecure® All rights reserved.

Relationship with UI Design (rev-a) 13

Like the UI design, the JSP file includes three major divisions:
* Header (lines 11-15)
« Container (lines 17-54)
« Footer (lines 56-60)

Typically, you will only need to modify a few lines in this template. Line 8 must
include the bean name for your backing bean for the Dashboard screen. This hame

must be the same as what you will declare in the module-faces-config.xml file; usually, I
use the module's ID and the word “"Home"; for example, adminHome for the Admin
module, dhcpHome for the DHCP module, and so on.

The next area that you will need to modify is the IntraModuleNavigation tag (lines 34-
37). Here you will insert one or more JSF CommandLink components to navigate to

© 2006 - 2007 StillSecure® All rights reserved.

CGl

the second-tier screens in your module. In this example, there is a link to the
ConfigureSystem screen.

Relationship with UI Design (rev-a) 14

Lastly, you will place the main content of your Dashboard within the SectionFrame
(lines 42-48) after the ScreenAnchor component (line 44). There are many ways to
represent information on a Dashboard screen. We will talk more about this in
Dashboard Screens section on page 101.

The rest of this template should be remain as-is in order to maintain the Cobia look-
and-feel. This template is provided in the Cobia project under the directory:
docs/SDK/examples/ui_devel/Dashboard TEMPLATE.jspx.

Multi-Content Screens (Overview)

Multi-Content (also called “two column” screens in the UI design) screens have a set of
navigation tabs in the left column. The typical use of this type of layout is for complex
configuration screens which require multiple, large blocks of configuration data.

Figure 7 shows an example multi-content screen for the Admin module.

(:@ B I A jack's account @reifesh @\Gg out @he%p
— r N
¥ 1 N " { \
£] N i | \
e g A
admin home > configure system
£
k ncel
a Configure system ®° @ca e
nersl Named hosts
3 add named host

Ethernet interfaces
description IP address

Networks and hosts Customer Support 182,168.2.38 edit delete
Internal Host 192.168.1.208 edit delete
Named networks
2dd named network
description IP address netmask
Marketing 10.1.14.55 255.255.0.0 edit delete
Development 10.1.14.101 255.255.0.0 edit delete
Hurmnan Resources 10.2.14,155 255.255.255.0 edit delete

@ ok @ cancel

8

5. license

Figure 7: Admin Module ConfigureSystem Screen
This screen has three content pages:

» General
» Ethernet interfaces
» Networks and hosts

The tabs on the left column allow the user to navigate from one configuration page to
the next. Conceptually all of these pages are part of a single screen:
ConfigureSystem. The are treated as a unit relative to the breadcrumb and validation
mechanisms.

The difficult part about Multi-Content screens is that the screen itself does not have a
JSP page; it only has a backing bean. A Multi-Content screen includes several content
pages. Each content page has a JSP page and its own backing bean.

NOTE: I will repeat this again because it is confusing. The one exception to the rule
that a screen is composed of a JSP page and a backing bean is Multi-Content screens.
These only have backing beans. The Multi-Content screen's pages have both
elements. Don't panic; I will talk about this in more detail later.

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Relationship with UI Design (rev-a) 15

Below is a template of the JSPX structure of a typical Multi-Content screen page:

1.
2.
3.
4.
5.
6.
7.
8.
9.

© 2006 - 2007 StillSecure® All rights reserved.

Relationship with UI Design (rev-a) 16

65. </ sp:root >

Like the UI design, the JSP file include three major divisions:

* Header (lines 11-15)
+ Container (lines 17-54)
* Footer (lines 56-60)

Typically, you will only need to modify a few lines in this template. Line 8 must
include the bean name for you backing bean for the Multi-Content screen; not for the
page. The specific page will also have a backing bean and it will be used in the
content area of the page. I will talk more about this in the Multi-Content Screen
section.

The only other area of this JSP page you will need to modify is the main content area
(line 44). This is where you will place the form widgets for this page's configuration.
We will talk more about this in Multi-Content Screens section on page 42.

The rest of this template should be remain as-is in order to maintain the Cobia look-
and-feel. This template is provided in the Cobia project under the directory:
docs/SDK/examples/ui_devel/MultiContentScreen TEMPLATE. jspx.

Fullscreen Screens (Overview)

Fullscreen screens do not include any tab navigation; the content area takes up the
full screen width; hence the name. Fullscreens are primarily used as configuration
screens; although they are also used for search screens, such as the Firewall's
MonitorLog screen.

Figure 8 shows an example Fullscreen from the Admin module.

C@BIA iacl's account () refresn ()log out () help

admin horme > confiqure system > ethernet interface (etha)

] Ethernet interface @Dk () cancel
S
Interface: etho
Link status: up
Rate: 100 mb/s full

Interface state: (3 up

O down
Interface role:
1P address: 110.1.80.3

MAC address: Oaidcild:1a:29:ee

Virtual interfaces (VIFs)

add virtual interface

VIF WIF state VIF role IP address netmask

etho:0 down web group 1 192,168.0.1 255.255.255.224 disable delete [
etho:l up web group 2 192.168.0.30 255.255.255.224 disable delete :
etho:z up development 1 192.168.0.62 255.255.255.224 disable delete L |
etho:d down development 2 192.168.0.94 255.255.255.224 disable delete [

&
Copyright ® 2002-2006 Sti

rights re 5.0-345. license

Figure 8: Admin Module Fullscreen: EditPhysicalInterface

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Relationship with UI Design (rev-a) 17

Below is a template of the JSPX structure of a typical Fullscreen screen type:

CoNouhlwWNE

PR
NEo

13.

Like the UI design, the JSP file includes three major divisions:
* Header (lines 11-15)
« Container (lines 17-43)
* Footer (lines 45-49)

© 2006 - 2007 StillSecure® All rights reserved.

G

Typically, you will only need to modify a few lines in this template. Line 8 must
include the bean name for you backing bean for this screen.

Relationship with UI Design (rev-a) 18

You will also have to provide an ID for the FullscreenFrame UI widget on line 31. I
usually use the name of the screen with a lower case letter. For example, if the
screen is called EditHost, then I use editHost in the id attribute. This is used when
you create the CSS styles for this page. More on this latter.

The only other area of this JSP page you will need to modify is the main content area
(line 44). This is where you place the form widgets for this page's configuration. We
will talk more about this in Configuration Pages section on page 47.

The rest of this template should be remain as-is in order to maintain the Cobia look-
and-feel. This template is provided in the Cobia project under the directory:
docs/SDK/examples/ui devel/FullScreen TEMPLATE. jspx.

© 2006 - 2007 stillSecure® All rights reserved.

Module Icons (rev-a) 19

Module Icons

One of the first things you must do when build the UI for a module is the create the
module icon set. Figure 9 shows an example icon set from the Admin module.

& D%

Figure 9: Icon Set

The Icon Set includes:

« Alarge icon to indicate that the module is selected and being viewed.
(iconLgCo_ <moduleID>.gif)

« A small faded icon to show a module that can be selected from the list.
(iconSmGy <moduleID>.gif)

+ A small full color icon to show the module is being selected when hovered
over. (iconSmCo <moduleID>.gif)

Where:

<moduleID> is the ID of the module you are creating. For example, the Admin
module uses ID of admin; so the large icon would be called: iconLgCo_admin.gif.

For more details about how to create module icons read the Cobia_Style_Guide
document.

After creation, these icon files must be placed in the images directory of the web
directory, for example: cobia/modules/admin/web/images/ directory for the Admin
module.

Next you must define the CSS styles that allow the InterModuleNavigation Ul
component to locate these icons. Create the file moduleNavstyle.css file in your
module's web/styles/ directory and include these three style definitions:

1. di v#nodul eNavi gation ul |i a.admn {

2. background: url (/adm n/i mages/i conSnGy_adnin.gif) top | eft no-repeat;
3. mar gi n: 0;

4. paddi ng: 85px 0 0 O;

5. wi dt h: 55px;

6.

7. div#nodul eNavi gation ul |i a.adm n: hover {

8. background: url (/adm n/i mages/i conSnCo_adm n.gif) top |eft no-repeat;
9. wi dt h: 55px;

10.

11. di v#nodul eNavi gation ul |i a.adm nSel ect {

12. background: url (/adm n/i mages/i conLgCo_adnmin.gif) top |eft no-repeat;
13. margi n: 0 5px 0 O;

14. paddi ng: 85px 0 0 O;

15. wi dt h: 71px;

16. }

Replace the word 'admin' with your module's ID. You might also need to adjust the
width and padding attributes if your icons are larger than standard Cobia icons.

© 2006 - 2007 stillSecure® All rights reserved.

CGl

Planning Screens (rev-a) 20

Planning Screens

This section provides a brief discussion of how to plan the screen flow for your module.
This will be brief because we cannot provide detailed advice on what is, because by its
very nature it is domain specific. However, there are a few general guidelines that
have been created by the UI design team which describes how UI development should
be done.

Basic Ul Design Guidelines

The dashboard should present summary statistics about the service (or services)
provided by your module. Let us call this the first tier screen.

The second tier screens should focus on high-level operation of your module's service.
Typically this means: configuration, monitoring, and reporting. Links to these screens
should be made available on the dashboard in the left-hand column of links; the
IntraModuleNavigation UI widget. Figure 10 shows an example of the buttons/links in
the Firewall dashboard.

- =,
Configure
firewall
Maonitor
firewall log

b .

Figure 10: Second Tier Buttons
on the Firewall Dashboard

The configuration screens should follow the Domain model from the root of the model
toward the leaf entities of the model. Each type of entity should have its own screen
(or content page) to configure that specific entity.

Example: Firewall Module

We will begin with a relatively simple domain: Firewall. Figure 11 shows the domain
model for the Firewall module. The FirewallState entity is composed of zero or more
FirewallRule entities, zero or more SnatRule entities, and zero or more DnatRule
entities. These rule entity classes inherit from abstract classes: Rule and NatRule.
However, this inheritance is purely a convenience for the Domain model developer and

© 2006 - 2007 stillSecure® All rights reserved.

Planning Screens (rev-a) 21

is not reflected in the UI. Also notice that the FirewallState includes an additional link
for the final firewall rule; there is always one of these.

)

T
5

irewal | Rul e Nat Rul e

VAN

Firewal | St at Snat Rul e

Dnat Rul e
Figure 11: Firewall Domain Model

Figure 12 shows the screen flow for the Firewall module.

© 2006 - 2007 stillSecure® All rights reserved.

Planning Screens (rev-a) 22

EditFirewallRule

CohfigureFirewall

EditFinalFirewallRule

ViewFirewallRules

EditSnatRule

ViewNatRules

EditDnatRule

MonitorLog

Figure 12: Firewall Screen Flow

From the Dashboard the user navigates to the ConfigureFirewall Mulit-Content screen
which includes two content pages: ViewFirewallRules and ViewNatRules. From the
ViewFirewallRules page the user can add or edit a user-defined FirewallRule entity;
both the add and edit operations are handled by the same screen definition because
there are no concrete differences between the UI widgets used in the add or edit
operation. There is also a link to edit the final firewall rule; this does require a new
screen because the set of operations (properties to change) are much more limited
than in the user-defined rules.

From the ViewNatRules page, the user may add/edit either an SNAT rule or a DNAT
rule. These have unique screens because there are differences in the type of data that
can be configured in their properties; specifically, SNAT rules allow masquerading but
DNAT rules do not.

Example: DHCP Module

Now let us look at a more complex module. Figure 13 shows the domain model for
the DHCP module. The DhcpServer entity class is the root of the model. It contains
zero or more Scope entities and it contains an instance of the OptionsMap which is a
complex Map-based data structure to hold server options (also called parameters). A
Scope entity contains zero or more DynamicPool and ReservationPool entities; it also
contains a collection of Lease objects which is for viewing only (not configuration).
Both pool entities inherit from an abstract Pool entity class. This class also contains a
single instance of the OptionsMap data structure. This Cobia data structure is based
upon the InheritableMap interface which allows one InheritableMap to inherit mapped
values from a parent. In the current DHCP model, pool options inherit from server
options. Pool options can override server options and define unique local options.
Lastly, the ReservationPool entity contains zero or more HostReservation entities.

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Planning Screens (rev-a) 23

© 2006 - 2007 StillSecure® All rights reserved.

Planning Screens (rev-a) 24

par ent

Opt i onsMap - Opt i onsMap

Pool

VAN
0..* %

Dynami cPool

o

Reservati onPool Host Reservati on

DhcpServer

Lease

Figure 13: DHCP Domain Model

Figure 14 shows the DHCP module screen flow. Notice the complex use of Multi-
Content screens. The ConfigureDHCP screen contains two pages: the
ConfigureServerSettings page which allows the user to start and stop the DHCP
service as well as add and edit scopes and the ConfigureServerOptions page which
allows the user to edit the server options.

The ConfigureScope screen has two pages: the EditScope page allows the user to add
and edit pools (both dynamic and reservation) and the ViewlLeasse page allows the
user to see the current set of leases issued to DHCP clients.

The ConfigurePool screen has two pages: the EditXyzPool page allows the user to
manipulate the IP ranges for the pool and the ConfigurePoolOptions page allows the
user to edit the pool options. There are actually four variations: AddDynamicPool,
EditDynamicPool, AddReservationPool, and EditReservationPool. The last two screens
allow the user to add and edit HostReservation entities.

© 2006 - 2007 stillSecure® All rights reserved.

G

FO - »+O

Dashboard ConfigureDHCP

CorffigServerSettings ConfigScope

Planning Screens (rev-a) 25

onfigServerOpts EditScope ConfigPool
ViewLeases EditResvPool EditHostResv
ConfigPoolOpts

Figure 14: The DHCP Screen Flow

Screen design is as fluid as Domain modeling and your module will likely have
different needs then what is shown here. However, the principles are basically the
same:

» Each domain entity should have it's own page or screen.

+ Start at the root of the model and work towards the leafs of the model.

»+ Complex entities should be split into multiple content pages.

+ Complex data structures should have their own content page.

Ul Development Steps

It is beyond the scope of this document to define a development process; however,
the following sketch is based on my experience building the first four modules in
Cobia:

1. Create a sketch of the Dashboard

This is critical because the dashboard is the first screen that the user visits
when you navigate to a module. Do not attempt to add content such as
graphs or charts to this screen because usually you will not have that data in
the Domain model yet.

2. Create the second tier screen for the configuration of your service. Add the
link from the dashboard to this screen.

3. Iteratively add screens and pages as you (or your team) develop the Domain
model.

4. After the configuration screens are complete, then create any monitoring
screens.

5. Finally, complete the Dashboard by adding graphs and charts.

© 2006 - 2007 stillSecure® All rights reserved.

Of course this is just a suggestion, but this order usually makes sense because until
you can configure your backend service it is usually not possible to generate the data
necessary to populate the search (monitor) screens and the dashboard's graphs.

Planning Screens (rev-a) 26

© 2006 - 2007 stillSecure® All rights reserved.

Screen Model and API (rev-a) 27

Screen Model and API

This section provides details about the screen programming model and the APIs of the
various screen types and modes. This is your starting point for creating Cobia
screens. There is a lot of information to absorb; do not feel that you have to
understand all of this immediately. It will take building several different types of
screens before you get all of this. Don't panic!

Screen Components

As described in the Screen Components (Overview) section on page 10, a screen
component is composed of two elements: a JSPX file and a backing bean (a Java
object). Figure 15 illustrates the connection between these two elements.

Screen.jspx

<jsp> - «uiWidget» - «interface»
JSP tag UIScreen backing bean Screen

</jsp>

Figure 15: Generic Elements of a Screen Component

The JSPX file includes a <c:screen> tag which creates a UIScreen object. This UI
widget include a JSF value binding which refers to the backing bean. This backing
bean must be an object that implements the Screen interface.

Figure 16 provides a concrete example from the Admin module.

EditHost.jspx

<jsp> «uiWidget» .
JSP tag - UIScreen backing bealn> EditHost
.... | '"#{editHost}' {editHost session
</jsp> attribute}

Figure 16: The EditHost Screen Component Elements

The EditHost.jspx file includes a <c:screen value='#{editHost}'>tag. The value
binding #{editHost} refers to a session-scoped attribute called editHost. This
session attribute holds the EditHost object. The EditHost class implements the Screen
interface. In fact, it extends the AbstractUpdateScreen class and we will see this class
in the The Update Screen API section on page 36.

Screen Types

The Screen interface includes a method to specify the layout type of the screen.
Figure 17 shows the API for this.

© 2006 - 2007 stillSecure® All rights reserved.

G

Screen Model and API (rev-a) 28

«interface» - «enumeratedType»
Screen ScreenType
DASHBOARD
+getType () : ScreenType DASHBOARD THREE COLUMN

MULTI PAGE
FULL SCREEN

Figure 17: Screen Type API

The ScreenType enum includes values for the three primary UI design layout types:

» Dashboard
. Mulit-Content
. Full screen.

The three-column Dashboard is included for a new type of layout for Dashboards
which is still being developed and is not described in this version of the UI Developer's
Guide.

Screen Rendering Process

The Screen UI component handles the basic HTML rendering. Here is the basic
structure of all Cobia screens:

<j sp: root
xm ns:jsp="http://java. sun. com JSP/ Page' version='2.0'

xm ns: f="http://java. sun. com jsf/core'

xm ns: h="http://java. sun.conljsf/htm"

xm ns:c='"http://cobia.stillsecure.org/jsf'

xm ns: ctags="http://cobia.stillsecure.org/tags' >
<jsp:directive. page content Type='text/htm ; charset=ISO 8859-1"' />
<f:vi ew>
<c:screen val ue=" #{ BEAN- NAVE} ' >
10. <ctags: | oadScript src='PATH TO JAVASCRI PT-FI LE' />
11. <ctags: | oadStyl e src=' PATH TO CSS-FI LE />
12. <h: formid="x"'>
13. <!-- SCREEN CONTENT HERE -->
14. </ h: forn®>
15. </ c: screen>
16. </f:view>
17. </j sp: root >

CoNohwhE

The j sp: root tag (line 1-6) declares the JSP file is a JSP Document; the XML version
of a JSP file. This is where you usually will declare all of the tag libraries that you will
use in this JSP page. The jsp:directive. page tag (line 7) declares the content type
of the page to be HTML. The f: vi ewtag (line 8) declares that this JSP is a JSF page.
The c: screen tag (line 9) declares the Cobia screen which creates a Screen
component in the JSP component hierarchy for the page. The ct ags: | oadScri pt tag
(line 10) allows you to declare a JavaScript file to include in the screen. This Cobia
custom tag (part of the ctags tag library) may be used as many times as you like, but
must exist inside of the screen tag. The ctags: | oadStyl e tag (line 11) allows you to
declare a CSS file to include in the screen. This Cobia custom tag may be used as
many times as you like, but must exist inside of the screen tag. Finally, the h: form
tag (line 12) declares a JSF form component. The rest of the page is represented
abstractly by the XML comment on line 13.

© 2006 - 2007 stillSecure® All rights reserved.

G

The Screen component renders the html , head, titl e, and body tags. It also renders
the script and | i nk tags within the head to include the JavaScript and CSS files
required by the screen. Here is the basic structure of the HTML content rendered by
the JSP structure listed above:

<I DOCTYPE htm PUBLIC \"-//WBC//DTD XHTM. 1.0 Transitional //EN"

"http://ww. w3. org/ TR/ xht Ml 1/ DTDY xht ml 1-transiti onal . dtd\">
<htm xm ns="http://ww.w3. org/1999/ xhtm ">

Screen Model and API (rev-a) 29

[EnY

<head>
<nmeta http-equi v="Content - Type" content="text/htm ; charset=i so-8859-1">
<titl e>SCREEN- TI TLE - PRODUCT- NAME</titl e>
<script |anguage="javascript" type="text/javascript"
src="/comon/ scri pts/ prototype.js"></script>
<script |anguage="javascript" type="text/javascript"
src="/comon/ scri pts/json.js"></script>
<script |anguage="javascript" type="text/javascript"
src="/common/ scri pts/firebugx.js"></script>
10. <script |anguage="javascript" type="text/javascript"
src="/comon/ scri pt s/ hel per_functions.js"></script>
11. <script |anguage="javascript" type="text/javascript"
src="/comon/ scri pt s/ addDomLoadEvent . j s" ></scri pt >
12. <script |anguage="javascript" type="text/javascript"
src="/comon/ scri pts/browser_sniffer.js"></script>
13. <script |anguage="javascript" type="text/javascript"
src="/common/ scri pt s/ cooki es. js"></script>
14. <script | anguage="j avascript" type="text/javascript"
src="/comon/ scri pt s/ navi gati on. js"></scri pt>
15. <script | anguage="javascript" type="text/javascript"
src="/common/ scri pts/css.js"></script>
16. <script |anguage="javascript" type="text/javascript"
src="/comon/ scri pt s/ obj ect.js"></script>
17. <script |anguage="javascript" type="text/javascript"
src="/comon/ scri pt s/ enabl e_di sabl e. j s"></scri pt>
18. <script |anguage="javascript" type="text/javascript"
src="/comon/scripts/util.js"></script>
19. <script |anguage="javascript" type="text/javascript"
src="/comon/ scri pts/sel ect.js"></script>
20. <I-- JAVASCRI PT FILES FROM <l oadScri pt> TAG | NCLUDED HERE - - >
21. <l -- COVPONENT JAVASCRI PT FI LES | NCLUDED HERE - ->
22. <l -- SCREEN- TYPE JAVASCRI PT FI LE | NCLUDED HERE - - >
23. <l -- SCREEN JAVASCRI PT FI LE | NCLUDED HERE - - >
24, <link rel ="styl esheet" type="text/css" href="/comon/styl es/ common. css"
nmedi a="screen">
25. <link rel ="styl esheet" type="text/css" href="/comon/styl es/forns.css"
nedi a="screen">
26. <link rel ="styl esheet" type="text/css" href="/conponents/styles/|abel.css"
nmedi a="screen">
27. <l-- SS FILES FROM <l oadStyl e> TAG | NCLUDED HERE - - >
28. <l-- COWONENT CSS FILES | NCLUDED HERE -->
29. <l -- SCREEN TYPE CSS FI LE | NCLUDED HERE - - >
30. <l-- MODULE CSS FI LE | NCLUDED HERE - ->

NookwhN

© ®

31. </ head>

32.

33. <body i d="Dashboar d" >

34. <formtarget="" id="x" name="x" nmethod="post" action="/adn n/ Dashboard.jsf"

enct ype="appl i cati on/ x- ww«+ f or m ur | encoded" >
35. <l -- SCREEN CONTENT HERE -->
36. </forn>
37. </ body>

39. </htni >

© 2006 - 2007 stillSecure® All rights reserved.

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

G

The text in RED is dynamic content. The titl e tag (line 5) outputs the title of the
screen, followed by a dash, and then the name of the product, currently Cobia;
however, this will be configurable in the future.

Screen Model and API (rev-a) 30

The scri pt tags in lines 6-18 are all of the standard JavaScript files that are always
available to all Cobia screens. This is followed by all of the JavaScript files specified by
the | oadScri pt tags. This is followed by all of the JavaScript files required by the
Cobia components used in the page. This is followed by the JavaScript file used by the
screen type; currently the only screen type with a]S file is the FULL_SCREEN type.
This is followed by the]S file for this screen with the path:

/ <modul el D>/ scri pt s/ SCREEN_|I D. j s; for example, the Admin EditPassword screen
would by: /admi n/ scripts/EditPassword.js.

The | i nk tags in lines 23-25 are all of the standard CSS files that are always available
to all Cobia screens. This is followed by all of the CSS files specified by the | oadSt yl e
tags. This is followed by all of the CSS files required by the Cobia components used in
the page. This is followed by the CSS file used by the screen type. This is followed by
the CSS file for this module with the path: / <nodul el D>/ st yl es/ <nodul el D>. css; for
example, the Admin module would by: / admi n/ st yl es/ admi n. css. This means that
the styles for all screens within a module must be placed within this file.

Lastly, the h: f or mtag renders to an HTML form tag (line 32).

Note: The above description is not the full story. Also included in the rendering of the
h: f or mtag includes some additional content used by the AJAX JSF library we include
with Cobia: RichFaces. For the most part, you can ignore these details.

Screen Modes

The screen type defines the layout structure, but not the purpose or mode of the
screen. Figure 18 illustrates the interface relationships of the screen modes.

«interface»
Screen

|
|
|
|

«interface»

UpdateScreen

|
|
|
|

«interface»
CommitScreen

Figure 18: The Three Screen Mode Interfaces

Currently there are only two fully defined screen modes:

+ View-based
« Configuration-based.

© 2006 - 2007 stillSecure® All rights reserved.

The Screen interface is responsible for basic view behavior. The UpdateScreen
interface extends the Screen interface and provides configuration-based behaviors;
this is also called the “update” mode because you can update or change the
configuration of an entity in your Domain model.

Screen Model and API (rev-a) 31

There is another screen mode “commit” that is reserved for future use.

The Screen API

Figure 19 provides a UML diagram of the fundamental Screen interface and the
AbstractScreen class that provides a base implementation of that interface. Typically,
you will never have to override the methods provided in the base class.

parent

«interface»

Screen
+getType () :ScreenType || | AbstractScreen
+setId(String) {abstract}

+getId () :String
+setBeanName (String)
+getBeanName () : String
+setModule (ModuleConfigqg)
+getModule () :ModuleConfig
+getDisplayName () : String

-screenID:String
-beanName:String
-module:ModuleConfig
-moduleID:String
-parent:Screen
-viewID:String

+getBreadcrumbName () : String
+getButtons () :List<Button>
«screenHierarchyMethods»

+getType () :ScreenType
+setId(String)
+getId () :String

+setParentScreen (Screen) tsetBeanName (String)

+getParentScreen () : Screen tgetBeanName () : String
+getRootScreen():Screen +setModule (ModuleConfig)
«lifeCycleMethods» +getModule () :ModuleConfig
+getViewID() :String +getDisplayName () :String

topen () :String #getDisplayNameParams () :Object[]
+refresh()fvoid +getBreadcrumbName () : String
—sreeljivo g #getBreadcrumbNameParams () :Object []

«screenHierarchyMethods»
+setParentScreen (Screen)
+getParentScreen() :Screen
+getRootScreen () :Screen
«lifeCycleMethods»
+getViewID() : String
+open () :String
+free () :void

Figure 19: The Screen Interface and Abstract Base Class

The Screen interface is the center of the Cobia UI Framework.

Basic Information

The getType method provides the type of layout. The base class returns FULL SCREEN
from this method, but may be overriden by other subclasses.

The screen ID, get1d/setId, must be the name of the screen and must match both
the JSPX file name and the backing bean's file name. For example, the EditHost

© 2006 - 2007 stillSecure® All rights reserved.

G

screen ID matches the EditHost.jspx and the EditHost.java file names. The base class
provides this object attribute, screeniD, and the setter and getter methods. This
attribute may only be set once; an assertion error is thrown if the application attempts
to set it twice.

Screen Model and API (rev-a) 32

The bean name, getBeanName/setBeanName, must be the nhame of the session-scoped
attribute that holds the backing bean object. This name is at the discretion of the Ul
developer, but it is best if it has a name that is reminiscent of the screen ID. For
example, the EditHost screen has the bean name of editHost. The base class
provides this object attribute, beanName, and the setter and getter methods. This
attribute may only be set once; an assertion error is thrown if the application attempts
to set it twice.

The module that this screen belongs to is stored in the screen object. The base class
provides this object attribute, module, and the setter and getter methods. This
attribute may only be set once; an assertion error is thrown if the application attempts
to set it twice.

The getDisplayName method provides the title of the screen. The base provides an
implementation that looks the screen title in the module's text.properties file using the
following key template:

<moduleID>.<screenID>.Title

For example, the key for the Admin module's EditHost screen would be:

admin.EditHost.Title

Some screen titles may choose to augment the title with domain-specific information.
For example, the EditHost screen might display the title “Edit Host (Fappy)”. To
accomplish this the title text property would use a message format structure like this:

admin.EditHost.Title=Edit Host ({0})

The {0} part of the string is replaced with a parameter passed to the Message object.
This parameter is provided by the protected helper method called,
getDisplayNameParameters, which returns an Object array. Here is what the
EditHost class method might look like:

cl ass Edit Host extends AbstractScreen {

. brot ected Object[] getDi spl ayNaneParaneters() {
return new Cbject[] { host.getDescription() };

NookwhE

The getBreadcrumbName method provides the name of the breadcrumb for this screen.
It is usually the same as the display name by in all lowercase.

The getButtons method provides a list of Button objects which are meant to display
in the main content section of the screen. Not all screens need this so the base class
does not provide an implementation of the getButtons method. This is left to
subclasses.

Screen Hierarchy Methods

Every screen keeps a reference back to its parent screen. Every screen must have a
parent except for Dashboards which are the root of the screen hierarchy for every
module. The setParent/getParent methods manage this information.

The getRootParent method returns the root screen in the hierarchy. This must
always be the Dashboard of the screen's module.

© 2006 - 2007 stillSecure® All rights reserved.

G

Screen Life Cycle Methods

Screen Model and API (rev-a) 33

The screen life cycle methods provide the connection to the JSF framework that the
Cobia UI Framework is built on top of.

The getviewID method returns the String which represents the JSF navigation
outcome name for this screen. The base implementation of this method creates an ID
using the following template: <moduleID>.<screenID>; for example, the Admin
module's EditHost screen has the view ID of admin.EditHost. These symbolic names
are used in the JSF configuration file to match the screen with the JSPX file that
implements the view for that screen. Here is a snippet from the Admin module's
web/WEB-INF/module-faces-config.xml file:

<navi gati on-rul e>
<fromviewid>*</fromviewid>
<navi gati on- case>
<f r om out cone>adni n. Edi t Host </ f r om out cone>
<t 0- vi ew i d>/ admi n/ Edi t Host . j spx</to-vi ewi d>
</ navi gat i on- case>
</ navi gati on-rul e>

NooakwhE

The open method is a JSF action method that instructs the JSF framework to display
this screen. The default implementation simply returns the viewID for this screen.
This method may be called several times during the life of the screen. If you need to
create any resources for this screen you should probably do it in the screen's
constructor.

The free method tells this screen object that it is no longer in the breadcrumb trail.
The default implementation removes the bean name from the session scope. The
free method may also be used to release any resources used by this screen. If you
override this method make sure that you call the super.free () method to free the
bean from the session scope.

The refresh method is called with the Refresh button in the application-wide menu in
the header division of the screen is clicked by the user. The purpose of this action is
to refresh the data on the screen or in the case of a configuration screen to reset the
data back to its original state. This method is application-specific and thus the base
class does not provide an implementation of this method.

The Dashboard API

Figure 20 provides a UML diagram of the API for the Dashboard base class. All Cobia
dashboards should extend the abstractDashboard class.

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Screen Model and API (rev-a) 34

© 2006 - 2007 StillSecure® All rights reserved.

GBI

Screen Model and API (rev-a) 35

AbstractScreen

{abstract}
AN

I
|
|
|
|
i

AbstractDashboard
{abstract}

+getType () : ScreenType
+setModuleID(String)
+getButtons () :List<Button
«lifeCycleMethods»
+open () :String

Figure 20: The Dashboard API

The Abstractbashboard class inherits all of the base methods from the
AbstractScreen class.

The AbstractDashboard class overrides the getType method and returns DASHBOARD.

The AbstractDashboard class adds the setModuleID method and allows the module
configuration to be assigned using the module's string-based ID. Dashboard backing
beans are created using the JSF managed beans facility and the module ID is declared
in the faces configuration file. Here is a snippet from the Admin module's web/WEB-
INF/module-faces-config.xml file:

1. <faces-config>

2 <managed- bean>

3 <managed- bean- nane>adni nHone</ nanaged- bean- nane>

4. <managed- bean- cl ass>

5. org.stillsecure. cobi a. modul e. adm n. web. Dashboar d
6 </ managed- bean- cl ass>

7 <managed- bean- scope>sessi on</ managed- bean- scope>

8 <managed- pr operty>

9 <pr operty- nane>i d</ pr operty- name>

10. <val ue>Dashboar d</ val ue>

11. </ managed- pr operty>

12. <managed- pr operty>

13. <property-nane>nodul el D</ pr opert y- nane>
14. <val ue>adm n</ val ue>

15. </ managed- pr operty>

16. <managed- pr operty>

17. <pr operty- nane>beanNanme</ pr operty- nane>
18. <val ue>adm nHome</ val ue>

19. </ managed- pr operty>

20. </ managed- bean>

21

22:¥)faces-config>

Note that the screen ID, the module's ID, and the bean name are configured directly
by this declaration. The AbstractScreen.getModule method knows how to use the
module ID to retrieve the ModuleConfiguration object from the Appliance class.

© 2006 - 2007 stillSecure® All rights reserved.

The AbstractbDashboard class overrides the getButtons method and returns an
empty list because dashboards do not have screen manipulation buttons.

Screen Model and API (rev-a) 36

The Abstractbashboard class overrides the open method and calls the refresh
method before returning the dashboard's view ID.

The Update Screen API

Figure 21 shows the UML diagram of the UpdateScreen interface API. Fullscreen
layout, configuration screens should subclass the abstractUpdateScreen class.

© 2006 - 2007 stillSecure® All rights reserved.

Screen Model and API (rev-a) 37

«interface» Q 77777777 AbstractScreen
Screen {abstract}
«interface» AbstractUpdateScreen
UpdateScreen {abstract}
«updateMethods» fGetButt () :List<Button>
+isModified () :boolean g? uttonst) :o1s utton
.)) «lifeCycleMethods»
+getConfirmationPrompt () :String .
. +refresh () :void
+save () :void
. «updateMethods»
+reset () :void . . .
getConfirmationPrompt () :String

Figure 21: The UpdateScreen Interface and Abstract Base Class

The UpdateScreen interface extends the Screen interface and provides additional
methods to handle configuration content.

The isModified method queries the screen object to determine if any form data has
changed. The base class does not provide a default implementation because this
method is always screen-specific.

The save method saves the form data changes. Depending on the screen and your
module, this could mean simply saving data into the local entities of the Domain
model, or it could save data to a database, or it could execute a Job to one of the
module's Manager objects.

The reset method resets the form data.

The getConfirmationPrompt method returns a user message. This is used when the
user attempts to navigate away from a configuration screen before they have saved
any changes on the screen. The default implementation looks up the message in the
module's text.properties file using the key based on the template:
<moduleID>.<screenID>.confirmationPrompt; for example, the Admin module
EditHost key is: admin.EditHost.confirmationPrompt.

The AbstractUpdateScreen also provides default implementation for several Screen
methods. The getButtons method returns a list of two buttons: the "OK” and
“Cancel” buttons. The behavior of the OK button is to call the save method on the
current screen and pop back to the parent screen. The behavior of the Cancel button
is to call the reset method on the current screen and pop back to the parent screen.

The Multi-Content Screen API

Figure 22 shows the UML diagram of the MultiContentScreen interface and the abstract
base class.

© 2006 - 2007 stillSecure® All rights reserved.

Screen Model and API (rev-a) 38

AbstractUpdateScreen

{abstract}
«interface» AbstractMultiContentScreen
MultiContentScreen || | {abstract}

-selectedPage:Content
+getContentPages () :Content

FgetcontentPages () :conctenc
+findPage (String) :Content
t+getSelectedPage () :Content
+setSelectedPage (Content) :void
+getFirstPage () :Content
«Screen Methods»
+getType () : ScreenType

+findPage (String) :Content
+getSelectedPage () :Content
+setSelectedPage (Content) :void

+open () :String
+getViewId () :String
+free () :void
«UpdateScreen Methods»
+isModified () :boolean
+save () :void

4+ + () =

e (S T

Figure 22: The MultiContentScreen Interface and Base Class

A Multi-Content screen contains one or more pages of content that make up a single,
conceptual screen. The interface provides methods to access these pages. At any
given time, there is only one content page visible to the user; this is called the
selected page. A content page is very similar to screens in most regards; they have
JSPX pages and backing beans which implement the Content interface.

The MultiContentScreen Methods

The AbstractMultiContentScreen is a base implementation of this interface and it also
extends the AbstractUpdateScreen. This decision was made because the typical use of
Multi-Content screens is organize complex configuration information. However, it
could be possible that you might want a Multi-Content screen whose pages are only
for viewing; this is also possible and is not prohibited by this implementation.

The getContentPages method must return the complete list of content pages.
Typically, this method is used to construct the pages and store the list for later use.
Because this method is highly dependent upon the actual screen, this method does not
have a default implementation.

The findpPage method finds the content page based on the String parameter, which is
the ID of the page.

The getSelectedPage method returns the current selected page. The default
implementation returns the selectedPage attribute if it has been set; otherwise, this
method returns the first in the list of pages.

The setSelectedPage method sets the selectedPage attribute. This method is called
by the HTML links generated by the MultiContentNavigation UI widget. This widget is
included in the Multi-Content layout by default. It generates the left-hand column
menu of tabs that allow the user to move between content pages.

© 2006 - 2007 stillSecure® All rights reserved.

G

The Screen Methods

The AbstractMultiContentScreen class also provides default implementations for
several Screen methods.

Screen Model and API (rev-a) 39

The getType method return the MULTI PAGE ScreenType value.

The getviewId and open methods return the view ID for the current selected page.
This is because Multi-Content screens themselves to not have a JSPX file, but rather
depend upon the content page JSPX files to render the specific pages of this screen.

The free method calls the free method for each content page and then removes the
session-scoped attribute for this screen.
The UpdateScreen Methods

The AbstractMultiContentScreen class also provides default implementations for
several UpdateScreen methods.

The isModified method iterates over each content page and returns true if any of the
pages have been modified.

The save method iterates over each content page and calls the save method on the
page if it has been modified.

The reset method iterates over each content page and calls the reset method on
each page if it is a UpdateContent page.
Content Page API

Figure 23 shows the UML diagram of the relationship between the MultiContentScreen
interface and the Content interfaces.

© 2006 - 2007 stillSecure® All rights reserved.

G

Screen Model and API (rev-a) 40

contentPage
«interface» g ; «interface»
MultiContentScreen 1..%* Content
+getContentPages () :Content +getId() :String
+findPage (String) :Content +getBeanName () : String
ownerScreen
+tgetSelectedPage () :Content - +getOwnerScreen () :Screerq
+setSelectedPage (Content) :void 1 +getViewId () :String
+open () :String
+refresh () :void

AN

«interface»

UpdateContent

+isModified () :boolean
+save () :void
+reset () :void

Figure 23: The Multi-Content Screen and the Relationship to the Content

The API for the two Content interfaces mimics the API for the two primary Screen
interfaces; so I will not discuss the individual methods. The only addition is the
getOwnerScreen method. This method returns a reference to the owner Multi-Content
screen object.

These interfaces also have default implementations called: AbstractContent and
AbstractUpdateContent. The default method implementations are basically the same
as those for the base Screen classes. In addition, there is a protected constructor in
the base classes that takes three arguments:

« Page ID (the name of the page class which is also the name of the JSPX file)

¢ Bean name

+ Owner screen.

All subclasses of either of these base classes must provide a constructor which calls
the super and pass in these three pieces of information.

Breadcrumbs and Confirmation

Every page includes the BreadcrumbTrail UI widget which appears between the inter-
module navigation bar and the gray frame which constitutes the main content of the

page.

NOTE: Dashboard screens do not render this widget because dashboards are always
the root of the breadcrumb trail.

The breadcrumb trail shows the screens that have been traversed to get to the current
screen. Each ancestor screen renders as an HTML link which the user can click on to
navigate back to that screen. Doing so pops all of the screens off of the breadcrumb
stack from the current screen up to the selected screen.

However, if the current screen and any other intermediate screens have unsaved
configuration changes, the user will be immediately sent to the Confirmation screen
(see Figure 24) and asked to either: Save, Don't save, or Cancel the operation. The

© 2006 - 2007 stillSecure® All rights reserved.

message in the center of the screen is generated from the screen that is modified, by
calling the getConfirmationPrompt method, or a generic message if multiple screens
require confirmation.

CGBIA

Before continuing...

Screen Model and API (rev-a) 41

‘ Do you wish to save your changes before continuing?

Q)save (Ddon‘tsave Q)caccee

200 cure®, All rig served, 5 . license

Figure 24: Confirmation Screen

The Save button tells the Cobia UI Framework to call the save methods on all screens
that have configuration modifications; starting with current screen and working
backwards to the screen just before the selected screen. Each of these screens are
popped off of the breadcrumb stack. Finally, the open method of the selected screen
is called providing the JSF framework with the view ID to navigate to.

The Don't save button tells the Cobia UI Framework to call the reset methods on all
screens between the current screen and the screen just before the selected screen.
Each of these screens are popped off of the breadcrumb stack. Finally, the open

method of the selected screen is called providing the JSF framework with the view ID
to navigate to.

The Cancel button returns the user to the current screen by calling the open method
on the current screen object.

Furthermore, clicking on any module icon in the intra-module navigation menu also
invokes the confirmation process.

© 2006 - 2007 stillSecure® All rights reserved.

G

Multi-Content Screens (rev-a) 42

Multi-Content Screens

This section describes the programming effort involved in building a multi-content
screen.

Purpose of Multi-Content Screens

Multi-Content screens are used to present complex data or configuration forms in
multiple pages of content but are treated as a single unit; a single screen. This should
only be used when each page of content is truly related to a single, coherent, but large
chunk of content.

API| Review

The MultiContentScreen interface provides a list of content pages each of which has its
own JSPX file and usually its own backing bean; although that need not be the case.
For more details read the The Multi-Content Screen API section on page 37.

The API allows the user to select a specific page to be viewed. This is done using the
MultiContentNavigation UI widget which is built into the Multi-Content screen
template. See the Multi-Content Screens (Overview) section on page 14.

Creating Multi-Content Screen Backing Beans

Creating the backing beans for Multi-Content screens is usually very easy. Simply
extend the AbstractMultiContentScreen class and implement the getContentPages
method. This requires that you have at least the first cut at an implementation of
each content page class. Of course, you can always just start with one content page
at a time and build up the complete screen iteratively.

Here is an example of a Multi-Content screen from the Admin module:

1. public class ConfigureSystem extends AbstractMilti Content Screen
2. {

3. publ i ¢ Confi gureSystem()

4. {

5. /] do not hi ng

6. }

7.

8. private List<Content> pages;

9.

10. I/

11. /1 Ml ti ContentScreen nethods

12. I/

13.

14. publ i c Li st <Content> get Cont ent Pages()

15. {

16. if (this.pages == null)

17.

18. thi s. pages = makePageli st () ;

19.

20. return this.pages;

21. }

22.

23. prot ect ed Li st <Content> makePageli st ()

24.

25. Li st <Cont ent > pages = new Arrayli st <Cont ent >();
26. pages. add(new General Settings(this));

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Multi-Content Screens (rev-a) 43

© 2006 - 2007 StillSecure® All rights reserved.

Commit Points (rev-a) 44

Commit Points

This section describes the current strategy for committing configuration data to a
module's backend manager. This strategy is likely to change and evolve over time as
we gain more experience building modules for a variety of different services.

The fundamental element of the Cobia commit point strategy is to save all
configuration changes for the whole module and save the whole model at one single
point within the module. The rationale is that most module's deal with a single service
which has a single configuration file. In these cases it makes sense to save all of the
changes at one point.

Saving occurs at the second-tier configuration screen, which is usually a Multi-Content
screen. Figure 25 shows the commit point for the Firewall module.

ConfigureFirewall

EditFirewallRule

EditFinalFirewallRule

ViewFirewallRules

Dashboar
EditSnatRule

ViewNatRules

EditDnatRule

MonitorLog
Figure 25: Commit Point for the Firewall Module

Any changes for individual firewall or NAT rules in screens such as EditFirewallRule,
EditSnatRule and so on, are saved in the domain model in memory. The complete
FirewallState model object is saved to the backend service when the user clicks the OK
button on the ConfigureFirewall Multi-Content screen (either on the ViewFirewallRules
or ViewNatRules page).

1. public void save()

2. {

3. /'l Save each content page

4. super . save();

5.

6. /] Commit the conplete nodel to the backend
7. /] This mght require additional work,

8. [/ but not in the firewall nodule.

9.

10. I'l" Create the Job

© 2006 - 2007 stillSecure® All rights reserved.

Commit Points (rev-a) 45

12. Job job = new Job(Firewall Constants. MODULE | D,

13. Fi rewal | Const ant s. MANAGER NAME,

14. Fi rewal | Const ants. SET_STATE_METHOD,

15. WebCont ext . get Current User ()) ;

16.

17. /] Store the nodel in the job

18. j ob. addPar anByNane(Fi r ewal | Const ant s. SET_STATE_METHOD | N_PARAM MODEL
19. ' t hi s. dashboar d. get Model ()) ;

20.

21. /|l Execute the job

22. job = appliance.inject Dependent Jobs(j ob);

23. JobResult jr = appliance. executeJob(job);

24.

25. [l Informthe user of any nessages fromthe job

26. for(FeedbackMessage usernessage : jr.getUser Messages())
27.

28. MessageUti | s. addMessage(usernessage);

29.

30. }

Some times a module might include multiple managers with independent domain
models. In this case, each content page within the second-tier Multi-Content screen
should be responsible for performing the individual commit points by using the
UpdateContent.save method for each page's backing bean.

Strategies to Get the Domain Model

In order to make changes to a configuration, you must also be able to retrieve the
configuration in the form of a Domain model from the backend. This is also done
using the Cobia Job facility.

For modules that use a single Domain model, like Firewall, it usually makes sense to
have the Dashboard screen object retrieve the model and then allow the configuration
screens to manipulate that model. Here is the code for the Firewall

Dashboar d. r ef resh method:

1. public void refresh()
2. {
3. /] Create the Get Job
4, Appl i ance appliance = Appliance.instance();
5. Job job = new Job(Firewall Constants. MODULE | D,
6. Fi rewal | Const ant s. MANAGER NAME,
7. Fi rewal | Const ants. GET_STATE_METHOD,
8. WebCont ext . get Current User ());
9.
10. /1 Performthe job
11. job = appliance.inject Dependent Jobs(j ob);
12. JobResult result = appliance. executeJob(job);
13. this.mdel = (Firewal |l State)
result.getResult(Firewal | Constants. GET_STATE _METHOD OUT_PARAM MODEL) ;
14. this.serverState = (ServiceState)
resul t.getResult (Firewal | Constants. GET_STATE METHOD OUT_PARAM SERVI CE_STATE)
15.
16. /| Process the user nessages for this job
17. Li st < FeedbackMessage > user Messages = result. get User Messages();
18. for(FeedbackMessage usernessage : userMessages)
19.
20. MessagelUti | s. addMessage(usernessage);
21.
22.
23. }

© 2006 - 2007 stillSecure® All rights reserved.

Commit Points (rev-a) 46

Other modules might require multiple Domain models in different configuration

screens (or content pages). In this case, the individual page should perform the “get
model” Job in the reset method.

For the rest of this document, we will not discuss the use of “get” and “set” jobs in
order to keep the code examples as simple as possible.

© 2006 - 2007 stillSecure® All rights reserved.

=
—]

CEBIA

=

Configuration Pages (rev-a) 47

Configuration Pages

This section describes how to create configuration pages.

The Purpose of Configuration Pages

A configuration page is a Fullscreen or page of a Multi-Content screen that
manipulates data in the Domain model for the purpose of configuring the backend
service.

A configuration page may also have buttons on the page that performs actions on the
managers of your module, which ultimately affects the operation of the service.

Elements of a Form Field

One of the main goals of the Cobia UI Framework is to provide a higher level of
abstraction on top of the standard JSF form component. In Cobia, form fields usually
include five elements. Figure 26 illustrates these elements for the ImagelList
component.

Label Rollover help

A-.-ti:y / Field message (not shown)

H f o
= Action: |H1_| OE!”D"'A N

L \ Oallnw
Oden',-'
&reject

Required flag The component

Figure 26: Elements of a Form Field Component

The five elements are:

+ The field component itself: a text field, a drop-down list, and so on
« The required flag; missing if the field is not required

« The field label

« The optional rollover help text

« The field message, which is displayed if a data conversion or field validation
error occurs

These five elements are arranged in different positions based upon the UI design of
the specific component. The component's JSF renderer decides this placement and so

© 2006 - 2007 stillSecure® All rights reserved.

G

The UI Component library includes several of these individual elements (FieldLabel,
RolloverHelp, FieldMessage) as unique components but these are not usually used in
isolation.

Configuration Pages (rev-a) 48

Screen Text and Internationalization Support

The Cobia Framework has a rich set of utilities for supporting internationalization
(often abbreviated as I18N). In general, all user-visible text is stored in the module's
text.properties resource bundle file located in the module's src/properties/
directory. The Cobia UI Framework takes advantage of these facilities and you will
quickly notice that no user-visible text will ever appear in the JSPX files. For example,
the labels and help text for components are stored in this resource bundle. For
example, the label for the component in Figure 2 on page 8 is defined in the resource
bundle like this:

firewall.EditFirewal | Rul e.rul eActi on. Label =Acti on

Take a close look at the structure of the resource key. The first element is the module
ID: firewall. The second element is the screen ID: EditFirewallRule. The third
element is the comonent ID: ruleaction. The last element is the attribute of the
component: in this case Label. Some components have several text attributes and
therefore may have multiple entries in the text.properties file with different attribute.
Here is the entry for the ruleAction component's help text:

firewall.EditFirewal | Rul e.rul eAction. hel pText =The action that will be taken
upon. . .

Other Text Messages

Beyond the support for component labels, the resource bundle should be used for all
text messages that will be shown to the user (and ideally even those that are sent to
the log file). Again, the common format of message keys is:
<moduleID>.<screenlID>.<messageKey>; for example, the message when a
RipInterface entity is saved uses the key: router.EditRipInterface.saveMessage.

Sometimes a message may be used by many screens or is generic; in that case you
may use the key structure: <moduleID>.<messageKey>. What is most important is
that all of your module's keys start with the module ID. The reason for this is that the
text.properties files of all modules are merged together and this first element of the
key is used as a namespace to prevent message key collisions.

Supporting Substitution

Just like in software development, your resource bundles should follow the Don't
Repeat Yourself principle. The most obvious example of this is that some screens may
have the same fields; this is very common with two screens that manipulates a single
type of entity, such as add and edit screens. For example, the Router module has two
screens to manipulate the RipInterface entity: AddRipInterface and EditRipInterface.
The add screen includes a drop-down list to select the Ethernet interface for the
RipInterface, but the edit screen does not allow the user to change this attribute.
However, both screens share all other fields, such as the “Passive mode on” checkbox.
Here is the component from the JSPX file:

<c: bool eanCheckbox i d=" passive' val ue='#{addRi p.ri p. passive}' />

The label for the edit screen is:
router. Edi t Ri pl nterface. passi ve. Label =Passi ve node on

© 2006 - 2007 stillSecure® All rights reserved.

http://en.wikipedia.org/wiki/DRY
http://en.wikipedia.org/wiki/DRY
http://en.wikipedia.org/wiki/DRY
http://en.wikipedia.org/wiki/DRY
http://en.wikipedia.org/wiki/DRY
http://en.wikipedia.org/wiki/DRY

G

Configuration Pages (rev-a) 49

The label for the add screen is identical. We could repeat this text, but if you decided
to change it in edit screen you might forget to change it in the add screen which could
lead to confusion for your users. The Cobia I18N facilities support the ability to
include a substitution using the syntax: {!KEY} to reference another KEY defined in
the resource bundle. Here is the label definition in the add screen:

rout er. AddRi pl nt erface. passi ve. Label ={! rout er. Edi t Ri pl nterface. passi ve. Label

}

Another use of substitutions is that frequently help text will refer to the field label.
Here is the extended version of the ruleAction help text in the Firewall module:

firewall.EditFirewal | Rul e.rul eActi on. hel pText =The {!firewal|l.EditFirewal | Rul e.rul eActi on. Label } is
the action that will be taken upon...

Notice the label substitution within the element in the help text. If the
ruleAction label ever changes, then the help text will automatically be updated as well.

Another common use is to define a set of common terms or acronyms used frequently
within the text of the UI. Here is an example from the Admin module:

admi n. | P. acronymr<acronym title="Internet protocol"'>lP</acronyns
admi n. | Pv4. acronyme<acronymtitle="Internet protocol version

4' >| Pv4</ acr onyn®

admi n. | Ps. acronyme<acronymtitle=
addr esses' >| Ps</ acr onyn

adm n. TCP. acronynr<acronymtitl e=
prot ocol ' >TCP</ acr onyn»

adm n. MACEMAC

adm n. MAC. acronyne<acronymtitl e='nedi a access control'>MAC</ acr onyns
adm n. VI F=virtual interface

adm n. VI F. acronyme<acronymtitle=

I nt ernet protocol (IP)

transm ssi on control

virtual interface' >VI F</acronyns

You can then use these generic terms embedded in a variety of label, help text, and
user messages for your module's GUI.

In general, it is not a good idea to use terms defined in other modules (although it is
legal to do so); however, you may use keys defined in the Admin and Firewall modules
because these will always exist in a Cobia appliance.

Supporting Multiple Languages

If you are not familiar with Java's I18N support, you might want to read the on-line
documentation and javadocs for the ResourceBundle class. In general, a properties
file can be translated into multiple languages and at runtime the “locale” of the user's
web browser determines which resource bundle is used to generate the text for the
GUI. So for example, if the user speaks German, then the text de.properties file
will be used to retrieve the text based on the common set of keys.

Currently, Cobia modules have not been translated, but the framework for supporting
internationalization is in place.

Lastly, you should read through the base text.properties file in the
appliance/src/properties/ directory. There are many generic terms that have
been pre-defined that you can use for substitution in your text messages.

Screen Buttons

© 2006 - 2007 stillSecure® All rights reserved.

CGl

By default, every configuration page has two screen-level buttons, OK and Cancel,
which appear at the top and bottom of the main content frame on the page. Figure 27
shows an example of the EditRipInterface screen.

Configuration Pages (rev-a) 50

router home > configure router > rip interface

O RIP interface @ ok @ cance
/ /)

When the user clicks on the OK button, the page's save method is called and this page
is popped off of the breadcrumb stack and the parent screen is displayed. If there are
any field conversion or validation errors, then these are displayed so the user can fix
these before proceeding with the save.

Figure 27: Screen Butons

When the user clicks on the Cancel button, the page's reset method is called and this
page is popped off of the breadcrumb stack and the parent screen is displayed. Any
field conversion or validation errors are ignored.

Content Buttons

Content buttons are special UI buttons that allow the user to execute actions on either
the UI or on the module's manager. Figure 28 shows two types of content buttons
that currently exist in the Ul component library.

O Configure firewall @M @ca"ce

Firewall rules Firewall status: running (_stopnaw | | (_clear all hit counters | W

Figure 28: Content Buttons

The first example (stop now) is called a ToggleButtons component and in this case it is
used to start and stop the firewall service. Here is the JSP code to generate this

component:
1. <c:toggleButtons id="firewall Status' condition="#{firewal |l Bean.running}' >
2. <c:contentButton id="startCommand' action="#{firewallBean.startServer}'
type='Start Now />
3. <c:content Button id='stopConmand' action="#{firewall Bean. stopServer}'
type=" St opNow />
4., </c:toggl eButtons>
The ToggleButtons component must contain two, and only two, ContentButton
subcomponents. The condition attribute must be a value binding that returns a
Boolean value. The first button is active when the condition attribute is false;
otherwise, the second button is active. Here is the code for this value binding:
1. publ i c bool ean i sRunni ng()
2.
3. return (this.dashboard. get ServerState() == ServiceState. RUNNI NG ;
4, }

© 2006 - 2007 stillSecure® All rights reserved.

G

Each ContentButton must have a JSF action method binding in the action attribute.
This is called when user clicks on that button. Note that only the enabled button can
be clicked by the user. Typically, these methods will execute some Job against a
Manager of your module. Here is the code for the Firewall startServer action

Configuration Pages (rev-a) 51

method:
1. public String startServer()
2. {
3. Appl i ance appliance = Appliance.instance();
4. User user = (User) WebContext.get Current User();
5. Job job = new Job(Firewall Constants. MODULE | D,
6. Fi rewal | Const ant s. MANAGER NANME,
7. BaseConst ant s. START _SERVI CE_METHOD,
8. user);
9. job = appliance.inject Dependent Jobs(j ob);
10. JobResult result = appliance. execut eJob(job);
11. if (! result.hasError())
12. {
13. ServiceState serverState = (ServiceState)
resul t. get Resul t (BaseConst ant s. START_SERVI CE_METHOD_OUT_PARAM) ;
14. t hi s. dashboar d. set Server St at e(server State);
15. }
16.
17. [l Process the user nmessages for this job
18. Li st < FeedbackMessage > user Messages = result. get User Messages();
19. for(FeedbackMessage usernmessage : userMessages)
20. {
21. MessageUti | s. addMessage(usernessage);
22.
23.
24, /'l Return back to this screen
25. return getView d();
26. }
Note that the value returned is the view ID of this screen bean; typically,
ContentButtons should return to the same screen, but this is not a requirement and
your action methods could choose to open another screen.
The ToggleButton component requires the following additional CSS styles that you
should include in the module's CSS file:
1. div#firewal | Buttons {
2. border-bottom solid 1lpx #666;
3. mar gi n-bottom lem
4. paddi ng- bottom 1lem
5. wi dth: 98%
6. }
7. div#firewal | Status div {
8. float: left;
9.
10. di v#firewal | Status span {
11. float: left;
12. margi n: 0 .5em
13. }

Lastly, the icons associated with each ContentButton are defined in a CSS file and
identified in the tag by the type attribute. In this example, the first ContentButton
has the type of StartNow. Here is the CSS styles for that button:

a. content St art NowBut t on {

background: url (../inmages/button_start_now.gif) top |left no-repeat;
wi dt h: 76px;

PwbpE

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 52

5. a.content Start NowButt on: hover {
6. background: url (../inages/button_start_now_hover.gif) top [eft no-repeat;
7. wi dt h: 76px;
8
9. a.content Start NowBut t onl nacti ve {
10. background: wurl (../inmages/button_start_now_ i nactive.gif) top | eft no-
r epeat ;
11. wi dt h: 76px;
12. cursor: default;
13.

There are four predefined ContentButton types:

« Reset

e Search

« StartNow
e StopNow

Their icons are already available in the UI Framework; however, you may create your
own ContentButton types and iconsby performing the following steps:

1. Create three icons: active, hover, and inactive.
2. Place them in your module's web/ i mages/ directory.

3. Create three styles in the web/ st yl es/ <nodul el D>. css file that mimic the
above styles but replaces “StartNow” with the type name of your button

You may also use ContentButton components in isolation; not just inside of the
ToggleButton component.

Form Layout Techniques

All configuration forms must be contained with a FormWrapper component. This
creates a <div> structure in the rendered HTML that is then styled to define the widths
of the field labels; thus providing alignment to the field components themselves. Here
is a simple example from the Admin module's GeneralSetting page:

1. <c:formNapper id='general Settings'>
2. <c:textField id="host Nanme' val ue='#{ bean. host Nane}' required='false' />
3. <c:textField id=" domai nNane' val ue='#{bean. donmai nNane}' required='false'
/>
4. <c:textField id= defaul tGateway' val ue='#{bean. def aul t Gat enway}"
requi red='fal se' >
5. <f:converter converterld=' converter.|pv4Address' />
6. </c:textField>
7. <lc:fornmNapper>
This form contains three simple TextField components contained in a FormWrapper.
Here is the style in the web/styles/admin.css file to define the label widths within this
div structure:
1. div#general Settings label { /* Formlabel wdth */
2. wi dt h: 12em
3. }

The width value depends on the length of the longest label in the page's form. Play
with this value until the labels no longer wrap in the three supported browsers:
FireFox v2, InternetExplorer (IE) v6 and IE v7.

© 2006 - 2007 stillSecure® All rights reserved.

CGl

Creating Sections

Configuration Pages (rev-a) 53

Sometimes it is important to group fields that have a common purpose.

The easiest way to do this is to separate a group of fields using a SectionHeading
component. Figure 29 shows an example heading from the Router module's
EditRipInterface screen:

General settings

[Passive mode on

[v" Accept default route

[« Advertize default route

Figure 29: Example SectionHeading in the
EdtRipInterface Screen

Here is the JSPX code to generate the section heading:

<c:sectionHeadi ng id="ripGenSetting' />

<c: bool eanCheckbox i d=" passive' val ue='#{addRi p.ri p. passive}' />
<c: bool eanCheckbox i d="accept NonRi pRequest s’

val ue=' #{addRi p. ri p. accept NonRi pRequests}' />

wh e

The text for the heading is defined in the text.properties file using the Label
component attribute. The RIP heading above is defined by this line:

router. EditRi plnterface.ri pGenSetting. Label =General settings

If a small group of fields have high cohesion, you may also group them into a
SubSection component. Figure 30 shows an example from the Router module's
EditRipInterface screen:

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Configuration Pages (rev-a) 54

© 2006 - 2007 StillSecure® All rights reserved.

CGBIA

Configuration Pages (rev-a) 55

Route expiration: (7)

#Timeout: |1gp seconds

= Deletion: |12p seconds

Triggered update: (7)

* Delay: seconds
Jitter: EI percent

Figure 30: Example SubSection in the EditRipInterface Screen

The SubSection creates a heading (with an option help text icon) and then indents the
child components. In this example, the routerExpiration SubSection contains two
TextField components. Here is the JSPX tags for this content:

1. <c:subSection id='routeExpiration'>

2 <c:textField id=" routeExpirationTi neout"’
val ue=' #{addRi p. ri p. routeTi neout}' size="4'" required="true' >

3 <f:converter converterld='converter.|nteger' />

4, <f:val i dat eLongRange m ni mun¥' 0" />

5. </c:textField>

6. <c:textField id="routeExpirationDel ay' val ue="#{addRi p.rip.del etionDel ay}'
size='4'" required="true' >

7 <f:converter converterld='converter.|nteger' />

8 <f:val i dat eLongRange mi ni mun¥' 0" />

9. </c:textField>

10. </ c: subSecti on>

The SubSection component must have a Label text attribute and an optional
helpText attribute in the text.properties file.

Displaying Content in Forms

Sometimes you need to display data in a form to provide necessary information to the
user to properly fill out the form. Figure 31 shows an example from the DHCP

module:
L
O DHCP scope
II'/- v
| General *Scope name: Employee Scope
Leases Interface: ethi

Subnet IP address: 10.1.14.0

Subnet mask: 255.255.255.0

[+ Scope enabled
Figure 31: Example Form Output

Here is the JSPX code for this chunk of the form:

© 2006 - 2007 stillSecure® All rights reserved.

-

<c: fornW apper id="editDhcpScope' >
<c:textField id="scopeName' required="true'
val ue=' #{ edi t Scope. scope. name}' val i dator="#{edit Scope. val i dat eScopeNane}"' >
<f:converter converterld='converter.TrinString />
</c:textField>
<c: fornfut put id="scopelnterface' styleC ass='fornTwoCol uml nf o'
val ue=' #{ edi t Scope. scope. et hl nterface. device}' />
<c: fornQut put id="subnetl pAddress' styled ass='formwoCol uml nf o'
val ue=' #{ edi t Scope. scope. et hl nt er f ace. net wor KAddr ess}' />
<c: fornQut put id="subnet Net Mask' styleC ass='for nTwoCol umml nf o'
0. val ue=' #{edi t Scope. scope. et hl nter face. net mask}' />

Configuration Pages (rev-a) 56

N

BooNo kW

The text for the labels is defined in the text.properties file:

dhcp. Edi t Scope. scopel nt erf ace. Label =l nt erf ace
dhcp. Edi t Scope. subnet | pAddr ess. Label =Subnet {!admi n.|P.acronyn} address
dhcp. Edi t Scope. subnet Net Mask. Label =Subnet nask

Lastly, the labels are actually HTML <dt > elements which need to be styled to be the
same width as the rest of the labels in the form. This code needs to be in the
dhcp. css file:

di v#edi t DhcpScope | abel , di v#edit DhcpScope dt { /* Form | abel width */
wi dth: 12em
}

The second CSS selector “div#editDhcpScope dt” identifies the FormOutput
components in the editDhcpScope FormWrapper.

Domain Modeling Review

This section provides a quick review of the domain modeling techniques used in Cobia.
There are two fundamental types of domain objects: entities and value objects. Figure
32 illustrates the general types of domain model elements used in Cobia.

© 2006 - 2007 stillSecure® All rights reserved.

Configuration Pages (rev-a) 57

Positional
Entities

Named
Entities

Entities

Domain
Model
Elements

Java
Primitives

Value
Objects

Multi-String
Rep. Types

Enumerated
Types

Single-String
Rep. Types

Figure 32: Types of Domain Model Elements

Entity Model Elements

An entity is a complex object that has some form of fixed identity. The identity is
usually defined by the domain itself. For example, an Ethernet interface identity is
defined by the symbolic device name given to it by the operating system, such as
“eth0” or “lo”. Another example, a RIP interface is identified by the Ethernet interface
assigned to the RIP interface. The concept of an entity is directly supported in Cobia
with the Entity interface and AbstractEntity base class in the
org.stillsecure.cobia.base.domain package.

There are two special subtypes of entities: named entity and positional entity.

A named entity is, as it sounds, an entity that has a user-defined name. Generally
speaking, a named entity does not have an identity that is based upon the name
because in most cases we allow the user to change these names; thus the names are
not fixed and cannot be used in an equals method to defined the identity of the
entity class. The named entity concept is also supported in Cobia with the
NamedEntity interface and AbstractNamedEntity base class.

© 2006 - 2007 stillSecure® All rights reserved.

G

A positional entity is an entity that exists within an ordered list within another entity
class. For example, a UiFirewallRule is a positional entity within the FirewallState
entity because the order of firewall rules is significant. At this time, there is no direct
support for the positional entity concept in Cobia.

Configuration Pages (rev-a) 58

Entities are mutable objects; the data attributes of an entity instance can be changed.
Whenever a change occurs the state of the entity should reflect this change, by calling
the setstate method. Typically, the UpdateScreen.save method changes the state
of an entity before leaving the screen that configures that entity type. The
UpdateScreen.isModified method is called before the save. If this method returns
false, then save is not called; thus the entity state is not changed. The Entity
interface includes an inner enum called state that has four values:

e UNMODIFIED

e MODIFIED

e ADDED

e DELETED
The latter two states are for entities that are within a collection (set or list) within
another entity.

Configuration screens are used to edit (modify) and add entities. The EntitySet and
EntityList components are used to manipulate collections of entities. The Dealing with
Entities section on page 65 describes how to build Ul components that manipulate
collections of entities.

Value Object Model Elements

A value object is a relatively simple object that does not have identity; that is, the
equality of two value objects is solely defined by the value(s) contained in the objects.
A corollary of this definition is that value objects are immutable. You cannot change
the internal data of a value object. If you need new data, simply create a new
instance of the value object class.

There are five special subtypes of value objects:
e Java primitives
* Enumerated types (Java enum classes)
» Single-string representation types
» Multi-string representation types
« Union types
There are eight Java primitives:

+ Boolean
 byte

« short
 int

+ long

« float

« double
 char

Typically, a Cobia module will likely only need Boolean, integer, and float-point
primitive types. The Dealing with Primitive Data section on page 70 describes how to
build field components that manipulate primitive data.

© 2006 - 2007 stillSecure® All rights reserved.

G

Enumerated types are types that have a finite set of values that are given symbolic
names. Java SE v5 now directly supports enumerated types using the enum construct.
For example, the Firewall module needs to distinguish between several IP protocols
and has defined the Protocol enumerated type with these values:

Configuration Pages (rev-a) 59

. ANY
. TCP
. UDP

s TCP_AND UDP
« ICMP

Enumerated types are frequently used in drop-down lists and displayed in summary
data tables. The Dealing with Enumerated Types section on page 74 describes how to
build field component that manipulate enum data.

Single-string representation types are any data types that can be represented with a
single, or simple, string of information. This is a very loose definition, so let me show
some examples to demonstrate this definition:

* An IPv4 address can be represented by a dotted-quad of bytes (integers
between 0 and 255); for example, *192.168.1.2" and “10.0.47.255" are both
valid IPv4 addresses. This data type is so useful that the Cobia team has
created a class to represent this data: the 1pv4address in the
org.stillsecure.cobia.base.domain.values package.

» A date is another example of a data type that can be represented by a single
string.

» Other examples include: NetMask and MacAddress.

Of course, you could always just store this information as raw String objects in your
Domain model. The question you need to ask yourself is, "Does the Domain model or
module manager classes need to manipulate this data?” Stated as an object-oriented
question, “Does the data have behavior?” If the answer is yes, then it is probably a
good idea to encapsulate that data in a Java class. The Dealing with Single-String
Representation Types section on page 79 describes how to build field components that
manipulate this type of data.

Multiple-string representation types are any data types that cannot be represented
with a single, or simple, string of information but must be represented with several
chunks of information. Again, an example will help you understand this loose
definition:

* An IPv4 subnet is a combination of an IPv4 address with a netmask (or CIDR
number); thus, it takes two pieces of information to construct such an object.
However, who is to say that "192.168.1.2/24" is not a simple string
representation? Clearly, it could be.

The difference between single-string rep and multi-string rep is one of preference or
UI usability. Ultimately, the answer to this question is whether or not it requires two
(or more) data fields to represent a single Domain model attribute. The Dealing with
Multiple-String Representation Types section on page 82 describes how to build field
components that manipulate this type of data.

A special subtype of multi-string-rep types is collections of simple data. The Java
language defines two simple collection types:

e sets - unordered data

» lists - ordered data

Cobia defines another collection type in the Range interface and RangeImpl class in the
org.stillsecure.cobia.util package: a range. A range is a collection of two values

© 2006 - 2007 stillSecure® All rights reserved.

G

that define a start and end point. Currently, this data type implements an inclusive
range. The range type is a generic class meaning it can be applied to any data types
that implement Java's Comparable interface. For example, you can have a
Range<Integer> Or @ Range<Ipv4Address> because both integer and IPv4 addresses
understand the concept of before and after: 42 is before 47 and 192.168.1.2 is before
192.168.47.1. The Dealing with Data Collections section on page 86 describes how to
build field components that manipulate collections of data.

Configuration Pages (rev-a) 60

Union types are data types that have multiple ways of representing a single piece of
information. This is analogous to the C language concept of the union structure;
hence the name. Again, an example is the best way to describe this concept. In the
Firewall module, we needed to represent the concept of an IP address matching
specification, which can be a single IP address, an IP subnet, a range of IP addresses,
a user-defined host (a named IP address) or user-defined network (a named subnet).
Take a look at the code in IpAddressMatchingSpec in the
org.stillsecure.cobia.base.domain.value package. In general, a union type
satisfies the following critieria:

+ There is an internal enum of the different types of representation; and a
getType method which returns the instance's representation type.

« There is a constructor for each type of representation.

+ There are getter methods for each type of representation, which is only
allowed if the instance is of the correct type (all calls on other getter methods
should throw an AssertionError).

» No setter methods are defined.

The last criteria is relevant to all value object classes, value objects are immutable.
The data of a value object must not be manipulated, ever. If you need to change the
data of an attribute that is a value object, then create a new instance of the value
object class and store that in the attribute.

Other Data Structures

Entities and Value Objects represent maybe 80% of the data/information
representation needs of a Domain model. It is possible that you will need more
complex data structures as well, such as maps, inheritable maps, queues, stacks,
trees, networks, and so on. There currently are no UI components that are designed
to help with these data structures.

How to Create Configuration Screen Backing Beans

Typically, a single entity type will have its own configuration screen. This screen will
include form fields to change the attributes of a single entity at a time. There are two
basic strategies for creating configuration screens:

« using the backing bean to store the modified data
e using the stateInterceptor utility to store the modified data
For the code examples in this section, imagine you have an entity class like this:
public cl ass Host AndDomai nNane ext ends AbstractEntity {

private String host Nane;
private String domai nNane;

public String get Domai nNane() {
return domai nNane;
}

0. public voi d set Domai nName(Stri ng domai nNane) {

PBoom~NookhwhE

© 2006 - 2007 stillSecure® All rights reserved.

G

11. t hi s. domai nNane = donmi nNaneg;
12. }

Configuration Pages (rev-a) 61

14. public String getHost Name() ({
15. return host Nane;
16. }

18. public void set Host Nane(String host Nane) {
19. t hi s. host Nane = host Nane;
20. }

22. public void reset State()

{
24. setState(Entity. State. UNMODI Fl ED) ;

Using the Backing Bean

In some ways, using the backing bean object to store the modified data is the most
straight-forward approach to creating configuration screens; however, as you will soon
see, it requires a lot of coding.

With this strategy, the page object (backing bean) would also contain the same data
attributes as the entity:

1. public class EditHostDomai nNames extends Abstract Updat eCont ent
2. {

3. I

4. /1 Screen data

5. I

6.

7. private String host Naned d;

8. private String host Nane;

9. private String domai nNamed d;

10. private String domai nNane;

11.

12. public String getHost Name()

13. {

14. return host Nane;

15. }

16. public void setHost Name(String host Nanme)
17. {

18. t hi s. host Nanme = host Nare;

19. }

20.

21. public String getDonmai nName()

22. {

23. return domai nNane;

24.

25. public void set Domai nName(Stri ng donai nNane)
26.

27. t hi s. domai nNanme = domai nNane;

28.

29. // nore nethods

30. }

This class defines the backing bean for a content page used within a Multi-Content
screen. Ignore that detail for now. Concentrate on lines 15-36. Notice that we have
defined one set of properties: hostName and domainName, but we also maintain an
“old” value for each. This will be used to determine if the user has changed any
values in the UI. The getter and setter methods are used by the JSF components to
modify the data in the backing bean. Here is the snippet of JSPX code that interacts
with this backing bean:

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 62

1. <c:fornWapper id='general Settings'>
2. <c:textField id="host Name' val ue='#{gener al Bean. host Nane}"'
requi red='fal se' />
3. <c:textField id=" donai nNane' val ue='#{gener al Bean. domai nNane}'
requi red='fal se' />
4. </c:formNapper>
Line 2 calls the getHostName method (line 20) to display the value in the text field and
when the user submits the form JSF calls the setHostName method (line 24) to store
the new value.
Finally, the backing bean must implement the UpdateContent methods: isModified,
reset, save, and refresh. Remember, the isModified method determines if the
user has made any changes to the data on the screen. The reset method is used to
retrieve the data from the Domain model. The save method is used to store the
modified data into the Domain model. And the refresh method is used to get the
screen data back into the last saved state. Here is that code:
1. public class EditHost Domai nNames extends Abstract Updat eCont ent
2.
3. // Screen data code from above (lines 3-28)
4.
5. publ i c Edi t Host Domai nNames(Scr een owner Scr een, Host AndDonai nNanme entity)
6. {
7. super (PAGE_NAME, BEAN_NAME, owner Screen);
8. this.entity = entity;
9. reset();
10. }
11. private static final String PAGE_ NAME =
Edi t Host Domai nNanes. cl ass. get Si npl eNane() ;
12. private static final String BEAN NAME = "general Bean";
13. private final Host AndDomai nNane entity;
14.
15. /1
16. /| Updat eCont ent net hods
17. I/
18.
19. @verride
20. publ i ¢ bool ean i shbdified()
21. {
22. if (! donmai nNane. equal s(donmai nNaned d)) return true;
23. if (! hostNane.equal s(hostNamed d)) return true;
24. return fal se;
25. }
26.
27. @verride
28. public void reset ()
29. {
30. /'l Restore the entity data into the backing bean
31. t hi s. domai nNane = entity. get Donai nName() ;
32. t hi s. domai nNamed d = t hi s. dormai nNane;
33. this. host Nane = entity. get Host Nane();
34. this. host Naned d = this. host Naneg;
35. }
36.
37. @verride
38. public void save()
39. {
40. /|l Save the user data into the entity
41. entity. set Host Nane(t hi s. host Nan®) ;
42. entity.set Domai nNanme(t hi s. domai nNane) ;
43. /[l Mdify the entity's state
44. entity.setState(Entity. State. MODI FI ED) ;
45, }

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 63

46.
47. @verride
48. public void refresh()
49,
50. /1l Sinply reset the backing bean data
51. t hi s. domai nNanme = this. domai nNaned d;
52. thi s. host Name = this. host Naned d;
53.
54. }
This code is pretty easy to understand. The most important aspect is that the save
method must set the entity's state to the MODI FI ED state. This tells the parent page
that the entity has been changed.
Using the Statelnterceptor Utility
NOTE: This facility is experimental; use at your own risk.
If your entities have many attributes, you can see that the using the backing bean
screen object to hold this data quickly becomes rather tedious. The Statelnterceptor
utility is designed to hold the attribute changes to an object without actually changing
the original object. Figure 33 Illustrates how the Statelnterceptor utility works.
getEntity «jsfBean»
Screen «domainObj»
Entity
set Val ue
| .
Screen.jsp w entity
|
: KProxy»
<Jsp> p| Entity
ce. setVaIu%
Tt } StateInterceptor
</jsp>
val ue=' #{screen. entity. val ue}'
Figure 33: How the StateInterceptor Works
The screen object is created with an instance of the entity object. The screen creates
an interceptor from the original entity object. The interceptor creates a proxy object
which behaves just like the original entity. It starts with all of the same property data.
The JSP value binding accesses this proxy object to retrieve the data and to set the
data when the user submits a change. When the screen's save method is called, the
screen object calls the comri t method on the interceptor object which then stores the
changes to the original entity object.
Using the Statelnterceptor utility does not require any changes to the domain entity
class; however, the screen backing bean will be coded as follows:
1. public class EditHostDomai nNames extends Abstract Updat eCont ent
2.
3. publ i ¢ Edi t Host Donmai nNames(Scr een owner Scr een, Host AndDormai nNanme entity)
4.
5. super (PAGE_NAVE, BEAN_NAME, owner Screen);
6. this.original Entity = entity;

© 2006 - 2007 stillSecure® All rights reserved.

Configuration Pages (rev-a) 64

The JSPX file also needs to reference the entity proxy. Here are the changes to the
main content of this example page:

A W bR

© 2006 - 2007 StillSecure® All rights reserved.

G

The great thing about using the Statelnterceptor utility is that no matter how many
properties (JavaBean-style get/set method properties) you add to entity object, the
backing bean code need not change.

Configuration Pages (rev-a) 65

There are limitations to the Statelnterceptor utility:

+ one-to-one relationships to other entity objects are not directly handled

To make changes to entities referred to by the proxy, you should use another
screen to make those changes.

* one-to-many relationships to other entity objects are not yet handled
« complex data structures such as maps, trees, and graphs are not yet handled
» derived properties are handled but require special coding

Here is an example of how to code a derived property:

1. @t at el nt ercept or Vet hod (type = Interceptor Mt hodType. DERl VED_PROPERTY,
propertyName = "")

2. public int getDomai nNanmeLengt h()

3.

4. return get Domai nNarme() .| engt h();

5. }

This method determines the number of characters in the entity's domainName
property. There are two coding requirements to make this derived property to reflect
any changes to the domainName property in the proxy.

« First, the method must be annotated to declare that this method is recognized
by the Statelnterceptor utility (line 1).

« Second, the code must not use the private attributes directly, but must use
methods to access all data in the object (line 4).
Using a Hybrid Strategy

Ideally, the Statelnterceptor utility would handle all Domain modeling constructs, but
because it does not frequently you will have to use a combination of these two
techniques.

Dealing with Entities

The Domain model for a module is usually a complex arrangements of relationships
between entities. Often these relationships are one-to-many. Review the models for
the Firewall (see page 21) and DHCP (see page 24) modules. The root of a Domain
model is typically a single entity object, in DHCP this is the DhcpServer object. This
object contains zero or more Scope entity objects. Each Scope object may contain
zero or more Pool entity objects, dynamic and reservation pools are subtypes. Lastly,
a ReservationPool object may contain zero or more HostReservation entity objects.

Entity Sets

When one entity contains an unordered, one-to-many collection of other entities, the
Java Set collection should be used. The ConfigureServerSettings page includes an
EntitySet to manipulate DHCP Scope entities. Figure 34 shows this table.

© 2006 - 2007 stillSecure® All rights reserved.

Configuration Pages (rev-a) 66

adda scops

name subnet IP subnet mask IPsin scope IPs used |Ps free %o used

Employes Scope 101140 2552552550 200 176 23 @) s disabe ekt
Visitor Scope 192.168.10 255.255.255.0 100 78 22 @) 7e% dsabe cekte
Ascounting Scope 101150 2652562550 254 127 127 @) so% disabe ekt
Development Scops 101160 265.255.285.0 254 221 33 @ W) o disabe dekts
Marketing Scope 101250 2852552550 100 64 ® @) ea% disabe ekt
HR Scope 101230 2552552550 100 3 62 @) 3% dsabe ekt
Saks Scope 101,250 255.255.255.0 254 251 3 @) o dsabe ekete
Support Scope 101310 2552562550 100 73 o7 @) 7% disabe deete

Figure 34: Example EntitSet from DHCP Module

Every element in this figure is rendered by a single UI widget, the EntitySet
component, plus embedded Column component that generate the data columns in the
table. Here is that JSP code:

1. <c:entitySet id="scopesTable' value="#{dhcpMyr.scopes}' var='scope'

2. al owsAdd="true' allowsEdit="true' allowsDel ete="true'>

3. <c: col um i d=' nane' val ue=' #{ scope. nane}' />

4. <c:colum id="subnet| pAddress' val ue='#{scope. ethlnterface.ipAddress}' />
5. <c:colum id="subnet Mask' val ue='#{scope. ethlnterface. net mask}' />

6. <c:colum id="ipslnScope' val ue='#{scope.totallPs}' type=' Nuneric' />

7. <c:colum id="i psUsed' val ue=' #{scope. usedl Ps}' type=' Nuneric' />

8. <c:columm id="ipsFree' val ue=' #{scope. freel Ps}' type='Nuneric' />

9.

</c:entitySet>

This component is similar to the dataTable component in the standard JSF library. The
purpose is to generate an HTML table that displays a collection of objects one in each
row of the table. Furthermore data columns in the table display specific information
from each object.

The EntitySet component takes that concept on step further by providing links that
allow the user to add, edit, and delete (and undelete) entities. These features are
enabled by special attributes on the entitySet tag:

 allowsAdd - determines if new entities can be added

« allowsEdit - determines if the entities can be edited

+ allowsDelete — determines if the entities can be deleted and undeleted
The Column component must have i d and val ue attributes. Optionally, this
component may include a type attribute which provides styling hints. The possible
values are:

« String - the value is a string (the default)

* Numeric - the value is a number

« Action - the value is a JSP link for an action (this is used internally)

+ Image - the value is an image (not yet supported)

+ Date - the value is a date
The EntitySet component includes these text attributes:

+ itemName - the name of the type of entity; this is used to create the “add a

XYZ" link

+ emptyMessage - the text to be displayed when the table is empty; a default
message is generated if this attribute is not specified

The Column component includes this attribute:

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 67

columnLabel - the label for this column

Here is the complete set of text attributes for this example:

dhcp. Confi gureServer Setti ngs. scopesTabl e. i t emName=scope

dhcp. Confi gureServer Setti ngs. scopesTabl e. enpt yMessage=No DHCP scopes have
been added. Cick add a scope to add a scope
to the DHCP server.

dhcp. Confi gureSer ver Setti ngs. scopesTabl e. nane. col utmLabel ={! BASE. nane}

dhcp. Confi gureSer ver Setti ngs. scopesTabl e. subnet | pAddr ess. col utmLabel =subnet
{l'adm n. | P. acr onyn}

dhcp. Confi gureServer Setti ngs. scopesTabl e. subnet Mask. col unmLabel =subnet mask
dhcp. Confi gureServer Setti ngs. scopesTabl e. i psl nScope. col unmmLabel ={! adm n. | Ps.
acronyn} in scope

dhcp. Confi gureServer Setti ngs. scopesTabl e. i psUsed. col umLabel ={! admi n. | Ps. acr

onyn} used

dhcp. Confi gureServer Setti ngs. scopesTabl e. i psFree. col umLabel ={! adm n. | Ps. acr

onyn} free

The EntitySet component requires the following backing bean members:

Set<XYZ> XYZsSet - the instance variable that holds the Set collection of
XYZ entities

For example, if the entity type is Scope, then this might be named scopesSet .
List<XYZ> XYZs - the instance variable that holds the sorted collection of
XYZ entities; this is calculated from the set above

int XYZsIndex - the instance variable that holds the index into the above
List; this is used by the edit and delete JSF actions and is set by a hidden field
Set<XYZ> getXYZsSet () - this method retrieves the set of entities

void setXYZsSet (Set<XYZ> var) - this method stores the set of entities
void clearXYZs () — this method clears the List instance variable
List<XYZ> getXYZs () - this method retrieves the order list of entities

int getXYZsIndex () - this method retrieves the index attribute

void setXYZsIndex (int var) - this method set the index attribute; this
is called automatically by the JSF hidden component

XY7Z getXYZ () - this method retrieves the entity at the specified index
String editXYZ () - this method is the JSF action method used when the
edit button is clicked by the user; it should use the get XYZ method to
determine which entity to edit and should navigate to a newly created edit
screen

String deleteXYZ () - this method is the JSF action method used when the
delete button is clicked by the user; it should use the get XYZ method to
determine which entity to delete and should navigate back to the same screen
String undeleteXYZ () - this method is the JSF action method used when
the undelete button is clicked by the user; it should use the get XYZ method to
determine which entity to undelete and should navigate back to the same
screen

String addXYZ () - this method is the JSF action method used when the
add link is clicked by the user; it should create a new entity, set its state to
ADDED, and then create an add (or edit) screen object and navigate to that
screen

void addXYZ (XYZ var) - this method is used by the add/edit screen when

adding a new entity; this should only be called if the user saves the new entity
(and not when the screen is canceled)

© 2006 - 2007 stillSecure® All rights reserved.

G

Take a look at the ConfigureServerSettings backing bean for an example of how these
methods are implemented.

Configuration Pages (rev-a) 68

Entity Lists

When one entity contains an ordered, one-to-many collection of other entities, the
Java Li st collection should be used. Lists keep positional information. The

ViewFirewallRules page uses an EntityList component to manipulate the list of Firewall
rules. Figure 35 shows this component.

© 2006 - 2007 stillSecure® All rights reserved.

17.
18.
19.
20.
21.
22.
24.

-Gl

Adda new rule at position Bcopying rule add ruke

Configuration Pages (rev-a) 69

position rule | rule details hitcount action log disabled
al edit dekte
Block all IRC 105 edit delet
2w nal allaccess publc web server edit dekete
Enable all to public weh 129 edit delet
3w nable incoming email delive: edit delete
Enable incoming email delivery 267 edit delet
Enable outgoing meil delivery s @ edit celete
Allow external employess FOF3 access from home a3 O @ edi delete
e Internal employess Internet an access , edit dekete
Give internal internet and DMZ 10,468 edit delet
inal Rule-Deny everything. 3 edit
Final Rule-Deny everything 206,951 edit

Figure 35: Example EntityList Component in the Firewall Module

An EntityList is very similar to an EntitySet. Here is the JSP code for this example:

<c:entityList id='"fwRules' value="#{firewallBean.firewall Rules}' var='rule'
last Entity="#{firewal | Bean. nodel . fi nal Firewal | Rul e}’
| ast EntityEdit Acti on="#{firewal | Bean. edi t Last Rul e}"
al | owsAdd="true' allowsEdit="true' allowsDelete="true' >
<c:columm id="description' value=" #{rul e.description}' />
<c: col um i d="hi t Count' val ue="#{rul e. hitCount}' type='Nuneric' />
<c:colum id="action' val ue="#{rul e. acti on}'
converter='converter.firewal |.Firewal | Rul eActi on' escape='false' />
<c:colum id="'1ogEnabl ed" val ue="#{rul e.| oggi ngEnabl ed}'
converter='converter.firewal |l .Firewal | Rul eLogEnabl ed" escape='false' />
<c:colum id="status' val ue=' #{rul e. enabl ed}"
converter='converter.firewal |l .Firewal | Rul eDi sabl ed" escape='false' />
<f:facet nane='entityDetails'>
<c:formN apper id="details'>
<c:fornDut put id="incom nglnterface' value="#{enpty

rul e.incom nglnterface ? "any" : rule.incom nglnterface}' />
<c: fornDut put id="outgoinglnterface' value=" #{enpty
rul e. outgoi nglnterface ? "any" : rul e.outgoinglnterface}' />

<c:fornQut put id="sourceAddress'
val ue=' #{rul e. sour ceAddr ess. di spl ayString}' />
<c: fornut put id="destinationAddress’
val ue=" #{rul e. desti nati onAddr ess. di spl ayStri ng}' />
<c: f or mQut put i d=' protocol"'
val ue=" #{rul e. prot ocol . di spl ayString}' />
<c: fornQut put id='"sourcePort’
val ue="#{rul e. sourcePort.di splayString}' />
<c: fornQut put id='"destinationPort'
val ue=" #{rul e. desti nati onPort.di spl ayString}' />
</ c: fornmW apper >
</f:facet>
</c:entityList>

The entityList tag has two attribute unique to lists:

« lastEntity - (optional) an entity that is always at the bottom of the list

« lastEntityEditAction — (optional) the JSF action method binding to edit this
unique item

Also notice lines 13 through 23; this creates a JSF facet which alters the EntityList
component. The entityDetail s facet allows the UI developer to provide more details
about each individual entity. These details are displayed in the hidden row below the
entity row. Notice the plus symbol in the first column; this allows the user to open
and close the entity details row. Figure 36 shows what this looks like.

© 2006 - 2007 stillSecure® All rights reserved.

Configuration Pages (rev-a) 70

(HE [4] Bockanme 105 @ edit cekte
L

Incoming interface: any

Qutgoing interface: any

Source address: any

Destination address: any

Protocol: TCF and UDP

Source port: any

Destination port: ircd (B857)

Figure 36: The entityDetai | Facet

This facet may be used by both EntityList and EntitySet components and it behaves
the same way.

The EntityList component also requires a complex set of backing bean methods.
Review the ViewFirewallRules backing bean code in the Firewall module to see what
you need to implement.

Dealing with Primitive Data

As I mentioned previously, there are eight primitive data types in Java: Boolean, byte,
short, int, long, float, double, and char (character). In this section, we will look at two
cases that are common in Cobia configuration pages: Boolean and integers.

Dealing with Boolean Values

There are two form widgets that input with Boolean values: BooleanCheckbox and
BooleanRadio.

Figure 37 shows several examples of a BooleanCheckbox.

© 2006 - 2007 stillSecure® All rights reserved.

Configuration Pages (rev-a) 71

General settings
[Passive mode on
[v" Accept default route

[« Advertise default route
Figure 37: Four Examples of a BooleanCheckbox

The component is a single HTML checkbox followed by a label. Here is the JSPX code
for this portion of the EditRipInterface screen:

1. <c:bool eanCheckbox id="passive' value='#{editR p.rip.passive}' />
2. <c: bool eanCheckbox i d=' accept NonRi pRequest s’
val ue=' #{edi t R p. ri p. accept NonRi pRequests}' />
3. <c: bool eanCheckbox i d=' accept Def aul t Rout €'
val ue=' #{edit Ri p. ri p. accept Def aul t Route}"' />
4. <c:bool eanCheckbox id="adverti seDef aul t Rout e’
val ue=' #{editRi p.ri p. adverti seDef aul t Route}' />
This component includes two text attributes:
« Label - the text label for the widget
* helpText - (optional) the text used in a rollover help icon
Figure 38 shows an example of a BooleanRadio widget.
Interface state: (% up
" down
Figure 38: An Example of a BooleanRadio
The component is a form label followed by two radio buttons stacked one on top of the
other; the true state is the top button. Here is the JSPX code for this portion of the
EditPhysicallnterface screen:
<c: bool eanRadi o id="interfaceStatus" value="#{editlntf.interface.status}"/>
This component requires three text attributes. Here are the attributes for this
example:
adm n. Edi t Physi cal I nterface. i nterfaceStatus. Label =Interface state
adm n. Edi t Physi cal I nterface. i nterfaceStatus.true. Label =up
adm n. Edi t Physi cal | nterface. i nterfaceStatus. fal se. Label =down
Sometimes you need to display a Boolean value to the user, but you do not want to
use the standard Java names: true and false. For example, you might want to
display: up or down (the state of an Ethernet interface), enabled or disabled, on or off,
and so on. Cobia provides a built-in JSF converter that allows you to display alternate
text.
Here is a snippet of the JSP code in the ViewlInterfaces page of the Admin module:
1. <c:entitySet id="intfTable'" value="#{intfMr.interfaces}' var="ethlntf'
2. al | ownsAdd="'fal se' allowsEdit="true' allowsDel ete='false' >
3. <c:col um i d=' nane' val ue=' #{ et hl nt f. nane}" sort="true' />
4 <c:columm id='state' val ue="#{ethl ntf. status}" sort="true' >

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 72

5. <ct ags: bool eanConverter type='UP/ DO />
6. </ c: col um>
7.

The status attribute is a Boolean value and the booleanConverter tag is converting this
internal value to the string “up” or "down”. There are four predefined types that you
may use:

« STANDARD - the standard Java values: true or false

* YES/NO - answers a question: yes or no

« OP-MODE - the optionational mode: enabled or disabled
UP/DOWN - the status of a device: up or down

You can also create your own converters to display icons that reflect a Boolean state
that is unique the situation. Figure 39 shows an example in which an icon is displayed
(or not displayed) for a firewall rule to be logged.

position rule | rule details hit count action log disabled

Block all IRC 105 0 edit delete
Enable all access to public web server 1129 O edit delete
Enable incoming email delivery 267 O Q edit delete
Enable outgoing mail delivery 46 O edit delete
Allow external employees POP3 access from home 93 O @ edit delete
Give internal employees internet and DMZ access 10,468 O Q @ edit delete

Fi_Z]ure 39: Example Boolean Converters to Icons

Here is the JSP code for this column in the firewall rules EntityList table:

<c:columm id="1|ogEnabl ed" val ue='#{rul e. | oggi ngEnabl ed}’
converter='converter.firewal |l.Firewal | Rul eLogEnabl ed'" escape='false' />

Here is the code for this converter:

1. public class Rul eLogEnabl edConverter inplenments Converter

2.

3. public final static String CONVERTER |ID =
"converter.firewal |.Firewal | Rul eLogEnabl ed";

4.

5. publ i c Object get Ashject (FacesContext ctx, Ul Component conp, String
di spl ayStri ng)

6. t hrows Convert er Excepti on

7.

8. assert false : "This converter is for display only.";

9. return null;

10. }

11.

12. public String getAsString(FacesContext ctx, U Conmponent conp, Object
obj ect) throws Converter Exception

13.

14. String result = null;

15.

16. if (object == null)

17.

18. result = HTM.. NBSP_ENTI TY;

19. }

20. el se

21. {

22. Bool ean rul eLogEnabl ed = (Bool ean) object;

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 73

23. if (rul eLogEnabl ed)

24. result = "<span class=\"loglcon\" title=\"Logging for this
rul e i s enabl ed\">| og</ span>";

25. el se

26. result = HTM.. NBSP_ENTI TY;

27. }

28.

29. return result;

30. }

31.

32.}

You will need to declare this converter in your module's faces configuration file and
you will need to defined the CSS styles for this class of span which identifies the icon.
Here is the style definition for this example:

1. .loglcon {

2. background: url (../imges/icon_|log.gif) top |left no-repeat;

3. di spl ay: bl ock;

4. hei ght: 0;

5. overfl ow. hidden;

6. paddi ng: 25px 7px 0 O;

7. wi dt h: 18px;

8. }
Dealing with Integer Values
Figure 30 on page 55 shows a set of text fields that take integers as input values.
Here are the JSP tags for the first field:

1. <c:textField id="routeExpirationTi meout' val ue='#{addRi p.ri p.routeTi neout}"

size="4" required="true' >

2. <f:converter converterld='converter.|nteger' />

3. <f:val i dat eLongRange ni ni mun¥'0' />

4. </c:textField>

The TextField component has three text attributes:

« Label - the label before the field itself
« helpText - the text displayed by the rollover help icon
* unitsLabel - the text after the field which is usually used to display the units of
the value entered
Here are the text properties for this example:

router. Edi t Ri pl nterface.routeExpirationTi meout. Label ={! CAP: BASE. t i neout }
router. Edi t Ri pl nterface.routeExpirationTi meout. unitsLabel ={! BASE. seconds}

where these substitution variables are defined in the base text.properties file as:

BASE. seconds=seconds
BASE. t i neout =t i neout

The key to using a text field to store an integer to the domain model is using a JSF
converter. Line 2 in the JSP code example above declares that this TextField
component must use the Cobia built-in converter.Integer converter. JSF has its
own built-in integer converter, but I had trouble with it in the past so I created one for
Cobia and have not had any more trouble.

Occasionally, you might want to have an entity attribute that you can specify with a
single text field, but you also want to give the user a choice of using your value or
some predefined default value that have a semantic difference than specifying a value;

© 2006 - 2007 stillSecure® All rights reserved.

G

that is some values change the operational mode of the service. For example, in a RIP
interface there is a parameter called a “routing table updates” which is usually
specified in the number of seconds between updates, but if the value is set to zero
then that tells RIP not to do updates at all. In this situation it is not very helpful to
simply provide a text field and force the user to remember that zero is a special value.
Instead Cobia provides the DatumChoice component which handles this situation.
Figure 40 shows the RIP form for this field.

Configuration Pages (rev-a) 74

Routing table updates:
C Request routing table updates every
I:I seconds
{* Do not request routing table updates

Figure 40: Example DatumChoice Component

Here is the JSP code for this field:

1. <c:datuntChoice id='requestlnterval' value='#{editRip.rip.requestlinterval}'’
default="0" size='3">

2. <f:converter converterld='converter.|nteger' />

3. <f:val i dat eLongRange ni ni mun¥'0' />

4. </c:datuntChoi ce>

The tag structure for this component is almost identical to a TextField component
except that there is a default attribute which specifies the value to be used if the
user selects the second radio button (the default).

The TextField component has three text attributes:

« Label - the label for the field itself
» helpText - (optional) the text displayed by the rollover help icon
« MAIN.Label - the text after the first radio button and before the field
« MAIN.unitsLabel - (optional) the text after the field which is usually used to
display the units of the value entered
« DEFAULT.Label - the text for the second radio button
Here are the text properties for this example:

router. Edi t Ri plnterface.requestlnterval.Label =Routing tabl e updates

#router. Edi t R pl nterface.requestlnterval . hel pText =

router. Edi t Ri pl nterface.requestlnterval . MAI N. Label =Request routing table
updat es every

router. Edi t Ri plnterface.requestlnterval.MAI N. uni t sLabel ={! BASE. seconds}
router. Edi t Ri plnterface.requestlnterval. DEFAULT. Label =Do not request routing
tabl e updates

Dealing with Enumerated Types

Enumerated types are used for a wide variety of situations. Here are a few examples
in existing Cobia modules:

« subset of Internet protocols

« the action of a firewall rule

+ the severity of an event

There are three HTML menu (or drop-down list) style components in Cobia that work
well with enumerated types: DropDownList, ImageList and ColorList.

© 2006 - 2007 stillSecure® All rights reserved.

G

The DropDownList Component

Configuration Pages (rev-a) 75

Figure 41 shows a DropDownlList component from the EditFirewallRule screen.

Protocol: 7 Ea”'ﬁ' Ll
Action ?g:,lp
Action: (7] Odeny r TCP

UuopP

TCP and UDP

Figure 41: DropDownList with an Enumerated Type

The DropDownList component has these text attributes:

« Label - the label for the field itself
» helpText - (optional) the text displayed by the rollover help icon
Here is the JSP code for this example:

<c: dropDownlLi st id="'protocol' value="#{editRule.rule.protocol}'>
<ct ags: enuntConverter

type='org.stillsecure. cobi a. base. donai n. val ues. Prot ocol ' />
<c: enunBSel ect|tens

type="org.stillsecure. cobi a. base. donai n. val ues. Prot ocol * />

</ c: dr opDownLi st >

N -

> W

The DropDownList component is purpose component in the spirit of the UISelectOne
JSF component. Therefore, the DropDownList component accepts an UlSelectltems
component. In this case, the Cobia UI Framework provides a built-in
EnumSelectltems component which takes a type attribute to declare the fully-qualified
Java class name for the enumerated type. This subcomponent generates the items
that populate the drop-down list; it creates a mapping between the enum value and a
user-friendly string. To accomplish this, the enum type must implement the
UiLocalizable interface in the org.stillsecure.cobia.web package.

Here is the (abbreviated) code the Protocol enum type:
publ i c enum Protocol inplenments U Localizable

ANY, TCP, UDP, TCP_AND_UDP, | CVP;

public String getLocalizedString()
{

return Enumlils. getlLocalizedString(this, BaseConstants. MODULE |D);
}

CoNohwhE

Cobia provides a EnumUtils class in the org.stillsecure.cobia.web.util package
which has a generic implementation of the getLocalizedString method. This
method performs a resource look-up for each enum value in a special resource bundle
file which should be stored in the module's src/properties/ directory called,
enum.properties. The resource keys are based on the following template:

<nodul el D>. <enunCl assNane>. <enunVval ue>

Here are the resource keys for the Protocol enum type in the Cobia base:

org.stillsecure. cobi a. base. donmai n. val ues. Prot ocol enum

© 2006 - 2007 stillSecure® All rights reserved.

RPpooNoOohwE

G

BASE. Pr ot ocol . ANY=any

BASE. Pr ot ocol . TCP=TCP

BASE. Pr ot ocol . UDP=UDP

BASE. Pr ot ocol . TCP_AND_UDP=TCP and UDP
BASE. Pr ot ocol . | CvP=I| C\VP

Configuration Pages (rev-a) 76

Occasionally and enum type will be nested in another class that uses that type. Here
is an example from the Router module:

public class Riplnterface extends AbstractEntity

{

public static enum Horizon inplenents U Localizabl e

NO_HORI ZON,
SPLI T_HORI ZON_POl SON_REVERSE,
SPLI T_HORI ZON;

public String getlLocalizedString()

{
return Enunlktils. getLocal i zedString(this,
Rout er Const ant s. MODULE | D) ;

}

/'l nore code

In Java's notation the enum type class name is RipInterface$Horizon. The dollar sign
is converted to a period when determining the resource key. Therefore, the
enum.properties file would include these entries:

Ri plnterface$Hori zon enum

router. Ri pl nterface. Hori zon. NO_HORI ZON=none

router. Ri plnterface. Hori zon. SPLI T_HORI ZON_PO SON_REVERSE=Spl it Hori zon
Poi son Rever se

router. Ri plnterface. Hori zon. SPLI T_HORI ZON=Spl it Hori zon

The ImagelList Component

Figure 42 shows a ImagelList component from the EditFirewallRule screen.

Action

*Action: () | deny e
Oallu:uw
Odenv
&reject

L
Figure 42: An Example ImageList Component

The ImagelList component has these text attributes:

+ Label - the label for the field itself
* helpText - (optional) the text displayed by the rollover help icon
Here is the JSP code for this example:

<c:inmagelLi st id="rul eAction' required="true'
type="org.stillsecure. cobi a. modul e. firewall.domain. Acti on’
val ue='#{editRule.rul e.action}' />

© 2006 - 2007 stillSecure® All rights reserved.

G

Unlike the DropDownList component, the ImageList only works with enum types and
does not use Selectltems. The enum type must implement the vicolor interface in
the org.stillsecure.cobia.web package.

Configuration Pages (rev-a) 77

Here is the code the Action enum type:

1. public enum Action inplenents Uilnage, Ui Localizable
2. {
3. ALLOW DENY, REJECT;
4.
5. publ i c | mageDat a get Di sabl edl mage()
6. {
7. return this.disabl edl nage;
8. }
9.
10. public | mageDat a get Hi ghli ght edl mage()
11. {
12. return this.highlightedl mage;
13. }
14.
15. public | mageData get Pri maryl nage()
16.
17. return this.primryl nage;
18. }
19.
20. public String getlLocalizedString()
21. {
22. return Enunlktils. getLocal i zedString(this,
Fi rewal | Const ants. MODULE | D) ;
23. }
24.
25. /1
26. [l Private
27. I/
28.
29. private Action()
30. {
31. String i mage_nanme = this.nane().tolLowerCase();
32. String image_file = null;
33.
34. image file = String.format ("/%/i nmages/icon_%_dropdown. gi f",
35. Fi rewal | Const ant s. MODULE_| D, i nage_nane) ;
36. this.primaryl mage = new U | mage. | mageDat a(i mage_file, 15, 15);
37.
38. image _file = String.format("/%/images/icon_%_dropdown_hi.gif",
39. Fi rewal | Const ants. MODULE | D, i nmage_nane) ;
40. thi s. hi ghlightedl mage = new Ui | mage. | mageDat a(i nage_file, 15, 15);
41.
42. image_file = String.format("/%/images/icon_%_dropdown_dis.gif",
43, Fi rewal | Const ants. MODULE_| D, i nage_nane) ;
44, thi s. di sabl edl mage = new Ui | mage. | mageDat a(i nage_file, 15, 15);
45. }
46.
47. private | mageData primaryl mage;
48. private | mageData highlightedl mage;
49. private | mageData di sabl edl mage;
50. }

Data conversion is also handled directly by the component and does not require a
converter.

Displaying Enum Values as Text and Icons
Occasionally you will need to display an enum value as either text or as an icon.

© 2006 - 2007 stillSecure® All rights reserved.

G

Figure 43 shows an example of an entity table that displays an enum as text.

Configuration Pages (rev-a) 78

interface interface status jnterface role IP address netmask RIP enabled metric authentication

etho up internal 192.168.0.1 255.255.255.0 yes 1 MD5 edit delete
eth0:0 up web group 1 192.168.0.1 255.255.255.0 yes 7 MD5 edit delete
eth0:1 up web group 2 192.168.0.30 255.255.255.0 yes 1 MD5 edit delete
ethl up Sprint 10.2.5.5 255.255.0.0 no 6 simple edit delete
eth2 down DMZ 10.2.5.6 255.255.0.0 no 2 simple edit delete
eth3 up Qwest 10.0.4.99 255.0.0.0 no 4 none edit delete

Figure 43: Displaying Enum Values as Text

Here is the JSP code for the authentication column in this table:

<c:columm id="authentication' value="#{rip.authentication.type}'>

<ct ags: enunConverter forDi splay='true'
type='org.stillsecure. cobi a. nodul e. rout er. dormai n. Ri pAut henti cati on$Type' />
</ c: col um>

The critical element is the use of the forbisplay attribute in the enumConverter tag.
This tells the converter to use the localized string of the enum value when converting
from the enum value to text.

Figure 39 on page 72 shows an example of an entity table that displays an enum as an
icon. Here is the JSP code for the action column in this table:

<c:columm id="action' value="#{rule.action}'
converter='converter.firewal | .Firewal | Rul eAction' escape='false />

This column specifies a module-specific converter and the escape attribute is false
which indicates that the rendered text is HTML code that should not be XML-escaped.
Here is the code for this converter:

1. public class Rul eActi onConverter inplenents Converter

2.

3. public final static String CONVERTER |ID =
"converter.firewal |l .Firewal | Rul eAction";

4.

5. publ i c Obj ect get Ashject (FacesContext ctx, Ul Component conp, String
di spl ayStri ng)

6. t hrows Convert er Excepti on

7.

8. assert false : "This converter is for display only.";

9. return null;

10. }

11.

12. public String getAsString(FacesContext ctx, U Conmponent conp, Object
obj ect) throws ConverterException

13.

14. String result = null;

15.

16. if (object == null)

17.

18. return "";

19. }

20.

21. try

22. {

23. Action action = (Action) object;

24. swi tch (action)

25. {

26. case ALLOW

27. {

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 79

28. result = "<span class=\"allow con\" title=\"Allow packets
that match this rule\">all ow/span>";

29. br eak;

30. }

31. case DENY:

32. {

33. result = "<span cl ass=\"denylcon\" title=\"Deny packets that
mat ch this rul e\">deny";

34. br eak;

35. }

36. case REJECT:

37.

38. result = "<span class=\"rejectlcon\" title=\"Reject packets
that match this rule\">reject";

39. br eak;

40. }

41. def aul t:

42, t hrow new O assCast Exception();

43. }

44. }

45. catch (C assCast Exception e)

46.

47. FacesMessage nsg

48. =

MessageUti | s. creat eFacesMessage(RULE_ACTI ON_CONVERTER_ERROR2,
object.toString());

49. t hrow new Converter Excepti on(nsg);

50. }

51. return result;

52. }

53. private static final String RULE_ACTI ON CONVERTER ERROR2 =
"firewal | . Rul eActi onConverter.getAsStringFail ed";

54. }

Like the icon-converter for boolean values, you will need to specify the CSS styles for

these span classes (on lines 28, 33 and 38) and create the necessary icons. Typically,
these icons will be the same as the “active” icons defined by the ImageData elements

in the UiColor implementation within the enum type itself.

Dealing with Single-String Representation Types

Strings are used for a wide variety of purposes: names, descriptions, passwords and
so on. There are three widgets in the Cobia UI Framework for dealing with strings:
TextField, SecretField and TextArea. Here are code snippets from JSP pages for each
of these three component types:
<c:textField id="description' required="true' size=' 25
converter='converter. TrinString'

val ue=' #{edi t Rul e. rul e. descri ption}'
val i dat or =' #{edi t Rul e. val i dat eRul eNan®e}' />

<c:textArea id="description' cols="40" rows=" 3
val ue=' #{edi t Reservation. reservation. description}' />

<c:secretField id="currentU Pwd' required='true'
val ue=' #{ edi t Passwor d. current U Pwd}"
val i dat or =" #{ edi t Passwor d. val i dat eCurrent U Password}" />

These components have these text attributes:
» Label - the label for the field itself

© 2006 - 2007 stillSecure® All rights reserved.

G

« helpText - (optional) the text displayed by the rollover help icon
The TextField component has one more text attribute:

» unitsLabel - the text after the field

In the first example, notice the use of the TrimString converter. This converter takes
a string input and calls the trim function on the string to remove any blank characters
surrounding any non-blank characters. Using this converter prevents a user from
entering blank characters for a name.

Configuration Pages (rev-a) 80

Strings are also used to provide a user-friendly representation of a simple value
object; see the Value Object Model Elements section on page 58. Two Ul widgets are
useful to handle the input of these types of value objects: TextField and
ChoiceTextField. Here is an example of a TextField that input an IPv4Address object:
<c:textField id="ipAddress' required='true'
converter='converter.|pv4Address' size='15"

val ue=' #{edi t Reservation. reservati on. i pAddr ess}'
val i dat or ="' #{ edi t Reservati on. val i dat el pAddr ess}' />

The critical element of using either of these components with a value object in the
domain model is the use of a converter. These converter can be pretty easy to build if
the value object class includes a constructor that takes a string object as a
parameter and has a toString method to recreates the string presentation.

Here is the (partial) code for the Ipv4Address value object class:

1. public class |pv4Address extends | pAddress

2. {

3. public final |ong address;

4.

5. public | pv4Address(String address) throws |11 egal Argument Exception

6. {

7. int shift = 24;

8. | ong addr = O;

9. for(String token : address.split("\\."))

10. {

11. | ong next = Integer.parselnt(token);

12. if(next <0 || next > 255)

13. throw new |11 egal Argunent Exception("Invalid |IPv4 address:
+ address);

14. addr | = next << shift;

15. shift -= 8;

16. }

17. if(shift '=-8 || address.endsWth(".")

18. throw new I | egal Argunment Exception("Invalid |IPv4d address: " +
address);

19.

20. this.address = addr;

21. }

22.

23. // MORE CODE

24.

25. @verride

26. public String toString()

27. {

28. return ((address >> 24) & Oxff) + "." + ((address >> 16) &
oxff) + "."

29. + ((address >> 8) & Oxff) + "." + (address & Oxff);

30. }

31. }

Here is the code for the Ipv4Address converter:

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 81

1. public class |pv4AddressConverter inplenents Converter

2.

3. [** The JSF ID for this converter. The ID nust be the sane as

4. * the ID defined in the framework-faces-config.xm file. */

5. public final static String CONVERTER |ID = "converter.|pv4Address";

6.

7. [**

8. * This nmethod converts the string representation to an | pv4Address
obj ect .

9. */

10. publ i c Obj ect get Ashject (FacesContext ctx, Ul Component conp, String
di splayString) throws ConverterException

11. {

12. | pv4Address result = null;

13. try

14. {

15. if (displayString !'= null && displayString.trinm().length() > 0)

16.

17. result = new | pv4Address(di spl ayString);

18. }

19. }

20. catch (111 egal Argunent Exception e)

21.

22. FacesMessage nessage

23. =
MessageUti | s. cr eat eFacesMessage(| Pv4ADDRESS_CONVERTER TO_OBJECT_FAI LED,
di splayString);

24. t hrow new Convert er Excepti on(nessage) ;

25. }

26. return result;

27. }

28. private static final String | Pv4ADDRESS CONVERTER TO OBJECT FAI LED =
"BASE. | pv4Addr essConverter. get Ashj ect Fai | ed";

29.

30. [**

31. * This nmethod converts the | pv4Address object to the string
representation.

32. */

33. public String getAsString(FacesContext ctx, U Conmponent conp, Object
obj ect) throws Converter Exception

34.

35. String result = null;

36. if (object == null) return "";

37. try

38. {

39. | pv4Address i = (| pv4Address) object;

40. result =i.toString();

41. }

42. catch (C assCast Exception e)

43. {

44, assert false : e;

45, }

46. return result;

47. }

48. }

When creating your own value object converters it is important that you consider the
case of nul | values. The conditional statement on line 15 prevents the converter from
attempting to converter an empty string, which fails in the object constructor.
Similarly, line 36 returns an empty string of the object parameter is nul | .

Lastly, notice the getAsObject method executes the Ipv4Address constructor in a try-
catch block. This is used to catch any IllegalArgumentExceptions that might be
thrown by the constructor. The catch block throws a JSF ConverterException and

© 2006 - 2007 stillSecure® All rights reserved.

G

uses the Cobia MessageUtils facility to create the necessary JSF message object
using a resource key. This key is looked up in the text.properties resource bundle.
Here is the text for this example:

BASE. | pv4Addr essConvert er. get AsQbj ect Fai | ed=Converter Error: Invalid |IPv4
address ''{0}'".

Configuration Pages (rev-a) 82

The {0} argument is the value entered by the user.

Dealing with Multiple-String Representation Types

Sometimes a value object cannot easily be represented with a single string in a
TextField. Therefore, we created the MultiTextField component. This component
creates a field that contains two or more text fields. The combined data is used to
construct a single value object.

Figure 44 shows an example from the DHCP ConfigureServerOptions screen.

Lease duration: 3 days |0 hours |0 minutes

Figure 44: Example MultiTextField Component

Here is the JSP code for this example:

<c:multiTextField id="leaseDuration' elenments='days: 3, hours: 3, ni nutes: 3'
val ue=' #{ gl obal Opti onsMyr . | easeDur ati on}'
requi red='"true' converter="converter.dhcp. Ti ne' >
<f:val i dat eLongRange m ni mun¥'1' />
</c:multi TextFi el d>

gRONE

The critical part of this component is the elements tag attribute. This is a comma-
delimited list of field IDs and the sizes of each field. These field IDs are critical for the
data conversion which we will discuss in detail below.

The leaseDuration attribute of the backing bean is stored as a single integer, the
number of seconds. Here are the accessor methods in the backing bean:

public int getLeaseDuration()

{

return | easeDuration;
public void setlLeaseDuration(int |easeDuration)

this.leaseDuration = | easeDurati on;

It is the responsibility of the converter.dhcp.Time converter to split the integer value
into three elements, days, hours and minutes; and also convert the three elements
back into a single integer value. The key to this type of conversion is that JSON (the
JavaScript Object Notation) is used to pass multiple values to the client. For example,
1 day / 2 hours / 3 minutes is represented as “{days:1 , hours:2 , minutes:3 }”
which is converted to 93780 seconds. The MultiTextField component generates
JavaScript code to parse this JSON object and place each data element into the
appropriate field based upon the field identifiers in the elements tag attribute (line 1).
There is also JavaScript code that reconstructs the JSON string which is sent back to
the web container to be handled by the JSF framework.

© 2006 - 2007 stillSecure® All rights reserved.

http://json.org/
http://json.org/
http://json.org/

G

Here is the code for the time converter:

Configuration Pages (rev-a) 83

1. public class TinmeConverter inplenents Converter

2.

3. [** The JSF id for this converter. Mist be the sane as defined in the
nodul e-faces-config. xm file. */

4. public final static String CONVERTER |ID = "converter.dhcp. Ti me";

5.

6. public final static int SECONDS | N M NUTE = 60;

7. public final static int SECONDS | N HOUR = SECONDS | N M NUTE * 60;

8. public final static int SECONDS | N DAY = SECONDS | N HOUR * 24;

9.

10. public Object getAsObject(FacesContext ctx, U Conponent conp, String
di spl ayString) throws ConverterException

11. {

12. int result;

13.

14. [/l Extract time elenments fromthe JSON obj ect

15. JSONObj ect j sonCbj ect = JSONObj ect. fronBtring(di splayString);

16. int days = getVal ue(j sonObj ect, DAYS KEY, "BASE. days", -1);

17. int hours = getVal ue(j sonGhj ect, HOURS KEY, "BASE. hours", 23);

18. int mnutes = getVal ue(jsonCbject, MNUTES KEY, "BASE. m nutes", 59);

19.

20. [/l Create result in seconds

21. result = (days * SECONDS_ I N _DAY) + (hours * SECONDS_ | N HOUR) +
(mnutes * SECONDS | N_M NUTE) ;

22.

23. return (Integer) result;

24. }

25.

26. private int getVal ue(JSONObj ect jsonObject, String fieldKey, String
fi el dNameKey, int max)

27. {

28. int value = 0;

29. try

30. {

31. val ue = jsonObj ect.getlnt(fiel dKey);

32. if (value <0)

33. {

34. String fiel dName = new Resource(fiel dNaneKey).toString();

35. FacesMessage nessage

36. =
MessageUti | s. creat eFacesMessage(TI ME_CONVERTER _VALUE_NOT_NEGATI VE,
fi el dNane) ;

37. t hrow new Convert er Excepti on(nessage) ;

38. } elseif (max I= -1 && value > max)

39.

40. String fieldName = new Resource(fiel dNameKey).toString();

41. FacesMessage nessage

42. =
MessageUti | s. cr eat eFacesMessage(TI ME_CONVERTER _VALUE_NOT_| N_RANGE,
fiel dNane, nmax);

43. t hrow new Convert er Excepti on(nessage) ;

44. }

45. }

46. catch (JSONException e)

47. {

48. String fiel dName = new Resource(fiel dNameKey).toString();

49. FacesMessage nessage

50. =
MessageUti | s. cr eat eFacesMessage(TI ME_CONVERTER VALUE_NOT_AN_| NT, fi el dNan®);

51. t hrow new Convert er Excepti on(nessage) ;

52.

53. return val ue;

54. }

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 84

55. private static final String TI ME_CONVERTER VALUE NOT_AN I NT =
"dhcp. Ti meConverter. val ueNot Anl nt";
56. private static final String TI ME_CONVERTER VALUE_NOT_NEGATI VE =
"dhcp. Ti neConverter. val uel sNegative";
57. private static final String TI ME_CONVERTER VALUE NOT | N RANGE =
"dhcp. Ti mreConverter. val ueNot | nRange" ;
58.
59. [**
60. * This method converts fromthe |Integer object to the string
representation.
61. */
62. public String getAsString(FacesContext ctx, U Conponent conp, bject
obj ect) throws Converter Exception
63.
64. I nt eger seconds = (lnteger) object;
65.
66. /1 Calculate tine el ements
67. int days = seconds / SECONDS | N_DAY;
68. i nt daysRemai nder = seconds - (days * SECONDS | N DAY);
69. int hours = daysRemai nder / SECONDS | N _HOUR;
70. int mnutes = (daysRenmai nder - (hours * SECONDS | N HOUR)) /
SECONDS_| N_M NUTE;
71.
72. /1l Create the JSON object with these el enents
73. JSONObj ect j sonObj ect = new JSONObj ect () ;
74. j sonQvj ect . put (DAYS_KEY, days);
75. j son(bj ect . put (HOURS_KEY, hours);
76. j sonoj ect . put (M NUTES_KEY, m nutes);
7.
78. return jsonObject.toString();
79. }
80.
81. static final String DAYS KEY = "days";
82. static final String HOURS _KEY = "hours";
83. static final String M NUTES KEY = "m nutes";
84. }
The text attributes of this component are a little more complex than other
components. It does include the Label and helpText attributes, but it also includes
optional pre- and post-labels for each element. Here are the text attributes for this
example:
dhcp. Confi gureServer Opti ons. | easeDur ati on. Label =Lease durati on
dhcp. Confi gureSer ver Opti ons. | easeDur at i on. days. post Label ={! BASE. days}
dhcp. Confi gur eSer ver Opti ons. | easeDur ati on. hour s. post Label ={! BASE. hour s}
dhcp. Confi gureServer Opti ons. | easeDur ati on. m nut es. post Label ={! BASE. i nut es}
Here is a another example. Figure 45 shows an example from the Firewall module.
IP address / netmask: (7) |192.168.1.2 / | 255.255.255.0
Figure 45: Another MultiTextField Example
This example has two elements: ipAddress and netmask. The converter used for this
example is the built-in converter.IpNetworkAddress converter. Here is the code for
this converter:
1. public class |IpNetworkAddressConverter inplenments Converter
2.
3. [** The JSF ID for this converter. The ID nust be the sane as
4. * the ID defined in the nodul e-faces-config.xm file. */
5. public final static String CONVERTER |ID = "converter. | pNetwor kAddress";

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 85

6.

7. public Object get Ashject (FacesContext ctx, Ul Component conp, String
di splayString) throws ConverterException

8. {

9. if (displayString.trin().length() == 0) return null;

10.

11. JSONObj ect j sonObj ect = JSONCbj ect. fronString(displayString);

12.

13. /1 Convert |P address

14. String i pAddrStr = jsonQbject.getString(lP_ADDRESS KEY);

15. | pAddr ess | pAddr ess;

16. try

17. {

18. i pAddress = | pAddress. parse(i pAddrStr);

19. }

20. catch (11l egal Argunment Excepti on e)

21.

22. FacesMessage nessage

23. = Messageltil s. creat eFacesMessage(BAD | P_ADDRESS NM5G
i pAddr Str);

24. t hrow new Convert er Excepti on(nessage) ;

25. }

26.

27. /1 Convert netnmask

28. String netmaskStr = jsonObj ect. get Stri ng(NETMASK KEY) ;

29. Net Mask net mask;

30. try

31. {

32. net mask = new Net Mask(net maskStr);

33. }

34. catch (11l egal Argunment Excepti on e)

35

36. FacesMessage nessage

37. = Messageltil s. creat eFacesMessage(BAD_NETMASK _MSG
net maskStr) ;

38. t hrow new Convert er Excepti on(message) ;

39. }

40.

41. return new | pNet wor kAddr ess(i pAddr ess, net mask);

42. }

43. private static final String BAD | P_ADDRESS MsG =
"BASE. | pv4Addr essConverter. get Ashj ect Fai | ed";

44, private static final String BAD NETVASK MSG =
" BASE. Net naskConverter. get Ashj ect Fai | ed";

45.

46. public String getAsString(FacesContext ctx, U Conmponent conp, Object
obj ect) throws Converter Exception

47. {

48. if (object == null) return "";

49.

50. | pNet wor kAddr ess network = (| pNet wor kAddr ess) obj ect;

51.

52. /1l Create the JSON object with these el enents

53. JSONObj ect j sonObj ect = new JSONObj ect () ;

54. j sonMhj ect . put (| P_ADDRESS KEY, network.get Address().toString());

55. j sonMhj ect . put (NETMASK_KEY, networ k. get Net mask().toString());

56.

57. return jsonQbject.toString();

58. }

59.

60. static final String |P_ADDRESS KEY = "i pAddress";

61. static final String NETMASK KEY = "net mask";

62. }

© 2006 - 2007 stillSecure® All rights reserved.

Dealing with Data Collections

Configuration Pages (rev-a) 86

If your Domain model includes an attribute that contains multiple values of some
primitive or value object, there are special UI widgets to deal with these.

Dealing with Lists or Sets of Values
Figure 46 shows the ValueAccumulator component.

Default gateways: (192.168.47.3| | add |

192.168.47.1
192.168.47.2

Figure 46: Example ValueAccumulator Component

The component uses a lot of JavaScript code to manipulate an internal HTML select
element using the add, edit, remove, up and down buttons. Values are added from
the text field either when the user types the Enter key or when the add button is
clicked. The user can edit a specific item either by double-clicking the item or by
single-clicking the item and then clicking the edit button; this removes the item from
the list and places it into the text field which can then be edited and re-added. The
user can remove an item by clicking the item and clicking the remove button.

If the list is ordered, the up/down buttons are displayed. The user single-clicks the
element to move and then clicks either the up or down button to move the item within
the list.

Here is the JSP code for this example from the DHCP ConfigureServerOptions screen:

<c:val ueAccunul at or id="defaul t Gat eways' |i st Hei ght="6'
|I'i stOrderabl e='true' textFieldSize='15'
val ue=" #{ gl obal Opti onsMyr . def aul t Gat ewaysStri ng}'
val i dat or ="' #{ gl obal Opti onsMyr. val i dat eDef aul t Gat eways}' />

el N

By default, this component transfers the list of items using a comma-delimited string.
Conversion must be done by the setter method in the backing bean or domain entity.
The validation of the items themselves must be done by a developer-supplied validator
method which must also parse the comma-delimited string.

Dealing with Ranges

Figure 47 shows an example of a MultiTextField used to input a value range.
IP address range: @ —
Figure 47: Example MultiTextField for a Range Value
The Cobia UI Framework provides a built-in converter to handle this generic type of
data collection: converter.Range. When using this converter the elements of the

MultiTextField must be named start and end. This converter must include an
embedded converter that is used to converter the individual elements.

Dealing with Lists of Ranges

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Configuration Pages (rev-a) 87

Figure 48 shows an example of a RangeAccumulator component.

© 2006 - 2007 StillSecure® All rights reserved.

CGl

+IP ranges: | _ | |

Configuration Pages (rev-a) 88

10.1.14.5 - 10.1.14.50
10.1.14.55 - 10.1.14.100

Figure 48: Example RangeAccumulator Component

Here is the JSP code for this example from the DHCP ConfigureServerOptions screen:

1. <c:rangeAccunul ator id="ipRanges' required='"true' dataType='string'
2. |'i stHeight="5" textFieldSize='16'

3. val ue=' #{ edi t Reser vat i onPool . i pRangesStri ng}'

4 val i dat or =" #{ edi t Reservati onPool . val i dat el pRanges}' />

Like the ValueAccumulator component, this component transfers the list of items using
a comma-delimited string of start/end values separated by the dash (-) character.
Conversion must be done by the setter method in the backing bean or domain entity.
The validation of the items themselves must be done by a developer-supplied validator
method which must also parse the comma-delimited string.

Dealing with Union Types

Union types are the most complex of the value object types used in Cobia. Figure 49
shows an example union type field in the Firewall module. Union type widgets are also
the most complicated widgets to use because it requires additional work to create the
specification of the mapping between the UI widget and the actual union type value
object. The details of this mapping are beyond the scope of this document; you must
analyze the code of the examples discussed below to figure out how to use this
component.

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Configuration Pages (rev-a) 89

© 2006 - 2007 StillSecure® All rights reserved.

CGl

Configuration Pages (rev-a) 90

* Source address: @ Any source IF address
[single IP address: @
[Defined host: @ j
[|P address / netraisk: @ | 192.168.141.0 H 255.255.255.0
(™ Detined netwark: @ j
r IP address range: @ —

Figure 49: Example UnionTypeField Component

Here is the JSP code for this example:

<c:uni onTypeFi el d i d=' sour ceAddr ess' required="'true'

val ue=" #{edi t Rul e. rul e. sour ceAddr ess}"

type='firewal | .| pAddressiat chi ngSpec'

el ement Or der =" ANY, HOST, USER_DEFI NED HOST, NETWORK,
USER DEFI NED_NETWORK, RANGE />

N

The t ype attribute declares the symbolic name for the union type specification for this
field and the el enent O der declares the order in which the union type “types” are
presented on the page.

The Union Type Specification

Every UnionTypeField component requires a union type specification which is an object
that maps between the UI widget and the actual union type object. The t ype attribute
is a symbolic name that maps to a Java class name to implements this specification
object. Figure 50 shows an abstract representation of the relationship between the UI
widget, the specification, and the actual union type value object.

«widget» l I Uni T 3 l I «valueObj»
UnionTypeField nrontypespec UnionType

Figure 50: The Abstract Relationship between the Widget and the Value
Object

Any module that requires a UnionTypeField must supply the
uni onTypeSpec. properti es file in the modules src/ properties/ directory. Here is
this file for the Firewall module:

firewal | .| pAddr essMat chi ngSpec=org. stillsecure. cobi a. nodul e. firewal | .web. | pA
ddr essMat chi ngSpeci fi cati on
firewall .| pPort Mt chi ngSpec=org. still secure. cobi a. modul e.firewall.web. | pPort

Mat chi ngSpeci fi cati on
firewal | .U AddressTransl ati on=org. stillsecure. cobia.nodul e.firewall.web. Addr
essTransl ati onSpeci ficati on

firewall.UiPortTranslation=org.stillsecure.cobia.module.firewall.web
.PortTranslationSpecification

This is @ mapping between the symbolic name used by the widget's t ype attribute and
the specification class. The specification class must extend the

Uni onTypeSpeci fi cati on abstract class from the org. stil | secure. cobi a. web
package. Figure 51 shows a specific example of this relationship.

© 2006 - 2007 stillSecure® All rights reserved.

G

Configuration Pages (rev-a) 91

«widget» g 3 UnionTypeSpecification
UnionTypeField {abstract}

AN

«valueObj»

IpAdd

P rgss ') IpAddress

Matching MatchingSpec
Specificaton g-p

{from Cobia Base}

Figure 51: Specific Example of the UnionTypeSpecification Mapping

Every union type specification class must implement these methods:

« get Types - this method returns the complete set of enum values of the union
type's Type enum

+ createU Conponent - this method creates the UI component used to input the
value for a specific “type” of the union type object

+ makeSet Functi on - this method generates the JavaScript code to set the
UnionTypeField's hidden input field from the selected radio button and its
individual data entry component

« makel ni t Functi on - this method generates the JavaScript code to initialize
the radio button and its data entry component from the UnionTypeField's
hidden input field; these two]S functions are the inverse of each other

e convert ToObj ect - this method converts a JSON string from the
UnionTypeField's hidden input field to an actual union type object

+ convertToString - this method converts an actual union type object to the
JSON string which is then stored in the UnionTypeField's hidden input field

+ validateObj ect - this method allows generic validation of the converted
union type object; frequently this method is not required if the
convert ToQhj ect method handles all of the validation

The best way to learn how to build one of these is to analyze an example. There are
four examples in the Firewall module. The | pAddr essMat chi ngSpeci fi cati on and
the Port Transl ati onSpeci fi cati on classes are the best examples.

The UnionTypeField Component
Figure 49 on page 90 shows an example union type field in the Firewall module.

The text attributes of this field require labels for each union type's type. Here is the
example from the Firewall module:

firewal |l . EditFirewal | Rul e. sour ceAddr ess. Label =Sour ce addr ess

firewal | . EditFirewal | Rul e. sour ceAddr ess. hel pText =hel p text. ..
firewall.EditFirewal | Rul e. sour ceAddr ess. ANY. Label =Any source

{'adm n. | P. acronyn} address

#firewal | . Edi t Fi rewal | Rul e. sour ceAddr ess. ANY. hel pText =

firewall.EditFirewal | Rul e. sour ceAddr ess. HOST. Label =Si ngl e

{'adm n. | P. acronyn} address

firewall.EditFirewal | Rul e. sour ceAddr ess. HOST. host . hel pText =hel p text. ..
firewall.EditFirewal | Rul e. sour ceAddr ess. USER_DEFI NED HOST. Label =Def i ned host
firewall.EditFirewal | Rul e. sour ceAddr ess. USER_DEFI NED_HOST. def i nedHost . hel pTe
xt=hel p text...

N ok wWhE

© 2006 - 2007 stillSecure® All rights reserved.

10.
11.
12.
13.
14.

15.
16.

NoorwNE

G

Configuration Pages (rev-a) 92

firewall.EditFirewal | Rul e. sour ceAddr ess. NETWORK. Label ={! admi n. | P. acr onyn}
address / netnask

firewal |l . EditFirewal | Rul e. sour ceAddr ess. NETWORK. net wor k. hel pText =hel p
text...

firewall.EditFirewal | Rul e. sour ceAddr ess. NETWORK. net wor k. i pAddr ess. post Label =

[

firewall.EditFirewal | Rul e. sour ceAddr ess. USER_DEFI NED NETWORK. Label =Def i ned
net wor k

firewal | . EditFirewal | Rul e. sour ceAddr ess. USER_DEFI NED_NETWORK. def i nedNet wor K.
hel pText =hel p text...

firewal | . EditFirewal | Rul e. sour ceAddr ess. RANGE. Label ={! adni n. | P. acr onyn}

addr ess range

firewall.EditFirewal | Rul e. sour ceAddr ess. RANGE. r ange. hel pText =hel p text...
firewal | . EditFirewal | Rul e. sour ceAddr ess. RANCE. r ange. i pSt art . post Label =&rdash

Notice that there are three layers of the component ID portion of the text key. For
example, the sour ceAddr ess is the ID of the UnionTypeField itself; the NETWORK is the
ID of the UnionTypeElement component is the second layer; and the net wor k is the ID
of the MulitTextField component is the third layer. The IDs of the second layer are the
names of the values of the union type's Type enum. The IDs of the third layer are the
IDs of the subcomponents defined in the cr eat eUl Conponent method in the
specification class.

UnionTypeField components also require special CSS styles. Here are the style
definitions for this example:

di v#edi t Firewal | Rul e di v#sour ceAddressOptions { /**/

margin: 0 0 0 18em
paddi ng: O;

di v#edi t Firewal | Rul e di v#sour ceAddressOptions | abel { /**/

}

wi dt h: 15em

The first definition declares the margin that places the radio buttons in-line with the

other form fields on this page. The second definition declares the width of the labels
after the radio buttons and before the embedded form widgets for each radio button.
The “Options” portion of the di v ID is added by the UnionTypeField component when
the component is rendered to HTML.

The UnionType Component

There is another variation on this component, called the UnionType or union type
section. Figure 52 shows the only existing example of this component from the Router
module, in the EditRipInterface screen.

© 2006 - 2007 stillSecure® All rights reserved.

Authentication

Configuration Pages (rev-a) 93

= MNone

- Simple password

- MDE password

Figure 52: Example UnionType Component

This component is similar to a UnionTypeField except that it is not rendered as a field
but rather as a separate section in the form. It includes its own SectionHeading (see
Creating Sections on page 53). After each radio button (one for each type of the
union type) a SubSection component is used. This component also uses a union type
specification but the code for this type of component is a little more complex than
specifications for UnionTypeField components. NOTE: specifications for these two
types of union type widgets are not compatible.

Review the code in the Ri pAut henti cati onSpeci fi cati on class in the Router module
for an example of this type of specification.

© 2006 - 2007 stillSecure® All rights reserved.

-

View and Search Pages (rev-a) 94

View and Search Pages

ouhwhE

This section describes how to create view and search screens.

The Purpose of View Pages

View pages are used to display dynamic data. This data usually comes from a
database. Figure 53 shows an example view page from the DHCP module.

DHCP scope @+ P

General IF' address MAC address \P address type
174.180.1.5 00.07.E9.AF.DBET dynamic
Leases

192.166.1.4 00:10:8E:EB:16:42 static (reserved)

@ 0K ® cancel

. leanze

Figure 53: Example View Page from the DHCP Module

View pages are like search pages, but the search criterion is predefined by the context
of the page. For example, the DHCP scope leases is the search for leases for a specific
DHCP scope. View screens should only be used when the expected result set is
relatively small because the complete result set will be displayed on one page.

The Structure of View Pages

Typically, a view page can use an EntitySet UI widget to display the data. Here is the
JSP code for this example:

<c:entitySet var="dhcpCurrent" val ue="#{edit Scope. scopedel .| eases}"

i d="| eases" all owsAdd="fal se" all owsDel ete="fal se" all owsEdit="fal se">
<c:col um val ue="#{dhcpCurrent.app_dhcp_cur _i paddress}" id="i pAddress" />
<c:colum val ue="#{dhcpCurrent.app_dhcp_cur_rmacaddress}" i d="nacAddress"/>
<c:colum value="#{'1Pv4'}" id="protocol" />

</c:entitySet>

Notice that the al | owsXyz attributes are all set to false. This means that the EntitySet
component does not allow the user to add, edit or delete any item in the table.

Finally, the objects supplied in the value list must implement the Enti ty interface
even though they will not be manipulated by configuration screens.

The Purpose of Search Pages

Search pages are used to search on and display dynamic data. This data usually
comes from a database. Figure 54 shows an example search page from the Firewall
module.

© 2006 - 2007 stillSecure® All rights reserved.

==
F dind

bc%("éh-?ﬁ&

View and Search Pages (rev-a) 95

JV' Monitor firewall log (=) done
B Hide search crileria
Datetime: tocday vI any time vI
Frotocol E Source IP: | conlains, j| |
Incoming interface: Destination IF |cmhms j| |
S T Source port | contains... v|| |
Rute: |“"Y ke j Destination port |cor|ta|r|s j| |

search reset

53 og entriss foundt, |23 4 nexts snoleI Ing entries ata time
dateitime data protocol incoming IE oulgoing \E source IF: destination \E s_|£|[M e

12/4/06 03:22:53 @ owe &thd - internal eth3 - external 192.168.43.1 192.168.45.3 - Block ICMP
12/4/06 03:22.60 @ o &tho - internal eth3- external 192.168.43.1 192.168.46.3 9- Block ICMP
12/4/08 03:18:47 ® ICMP eth0 - internal eth3 - infernal 192.168.43.1 192.188.46.3 9- Block |ICMP

12/4/06 03:18:24 @ o ethd - internal eth3- external 192.168.43.1 192.188.46.3 - Block ICMP

12/4/06 03:18:05 @ o ethi - internal eth3d- external 192.168.43.1 192.168.45.3 - Block ICMP

12/4/06 03:19:00 @ o &tho - internal eth3- internal 192.168.43.1 192.168.46.3 9- Block ICMP

12/4/08 03:17:49 ® ICMP eth0 - internal eth3 - external 192.168.43.1 192.188.46.3 9- Block |ICMP

12/4/06 03:17:40 @ v &thd - internal eth3- external 192.168.43.1 192.168.46.3 - Block ICMP

12/4/06 03:17:27 @ o ethi - internal eth3d- external 192.168.43.1 192.168.45.3 - Block ICMP

12/4/06 031717 @ ICMP ethO - infernal eth3 - external 192.168.43.1 192.168.46.3 9- Block |ICMP

@ done

Figure 54: Example Search Page from the Firewall Module

Search screens allow the user to dynamically specify the search criteria for the result
set. Search screens should be used when the expected result set is relatively large
because the result set will be truncated. The user will then be allowed to page
through the result set one chunk at a time.

The Structure of Search Pages

Search pages are split into two section:

» The criterion section at the top of the page provides a form that allows the
user to enter the data for the database search as well as the reset and search
buttons.

+ The result set table at the bottom of the page provides the table of the data
plus controls to move through the pages of the result set as well as the size of
each page chunk.

Both of these sections are contained within a FormWrapper component to provide
proper CSS styles for the form elements.

The Criterion Section
The criterion section provides:
+ a toggle button to show and hide the criterion section
e the search form fields
« the search and reset buttons
Here is a sketch of the criterion section:
1. <c:showH deToggl e id="1ogSearchCriteriaShowH de'

© 2006 - 2007 stillSecure® All rights reserved.

View and Search Pages (rev-a) 96

onEl enent='firewal | LogSearchCriteria'
val ue=" #{noni t or Log. showCriteria}' />

<c: division id="searchCol umOneCriteria' >
<l -- LEFT SIDE SEARCH FI ELDS - ->

2
3
4.
5. <c:division id='firewal |l LogSearchCriteria' >
6.
7
8
9 </ c: di vi si on>

11. <c:division id="searchCol umTwoCriteria' >

12. <l-- RICGHT SIDE SEARCH FI ELDS -->

13. </ c:division>

14.

15. <c:division id="searchButtons' styleC ass='searchNavi gation' >
16. <l-- HTM. CONTENT FOR THE RESET/ SEARCH BUTTONS - - >

17. </ c:division>

18. <f:verbatinmr<br clear="left" /></f:verbatinp

19.

20. </ c:di vi si on>
21. <f:verbati np<hr /></f:verbatine

The ShowHideToggle component is used to create the plus/minus icon (with
corresponding text) which is used to show or hide an HTML division specified by the
onEl enent attribute. So far this component is has only been used in search screens,
but it is a generic component that can be used in a variety of screens.

The main firewal | LogSearchCriteria division is organized into three divisions:
e searchCol umOneCritieria, which provides the criteria form fields on the left
side
« searchColumTwoCritieria, which provides the criteria form fields on the
right side
« searchButtons, which provides the reset and search buttons
Figure 55 shows the data objects for entering the search criteria.

. criterdia . A .
LogMonitorRequest ’r} LogMonitorCritieria
{from Firewall domain pkg} 1 {ffrom Firewall domain pkg}

-startDate:Date
-endDate:Date
-protocol:Protocol

-criteria:LogMonitorCriteria
-entriesToReturn:int
-pageToReturn:int
-sortOn:SortField {nested enum}
-sortAscending:boolean

-incomingInterface:String
-outgoingInterface:String
-ruleDbIndex:int
-sourcelp:StringSearchCriterion
-destIp:StringSearchCriterion

-sourcePort:StringSearchCrit
-destPort:StringSearchCrit

Figure 55: Search Request Data Objects from the Firewall MonitorLog Screen

The data in the Loghoni tor Cri teri a object is populated by the form fields on
criterion section of page. The data in the LogMoni t or Request object is populated by
fields in the result set table section of the page that will be discussed below.

Most of the criteria form is composed of UI widgets that we have already discussed in
the Configuration Pages section above. Here is the JSP code for the form widgets on
the left side of the criteria section:

© 2006 - 2007 stillSecure® All rights reserved.

G

View and Search Pages (rev-a) 97

1. <c:division id="searchCol umOneCriteria'>

2. <c:textField id="startDate' required= false'

3. val ue=" #{noni t or Log. | ogRequest.criteria.startDate}"' >

4. <f:converter converterld="converter.Date" />

5. </c:textField>

6. <c: dropDownLi st i d='protocol'

7. val ue=" #{ noni t or Log. | ogRequest . criteria. protocol }' >

8. <ct ags: enunmConverter

9. type='org.stillsecure. cobi a. base. dormai n. val ues. Protocol ' />
10. <c: enuntel ectltens

11. type='"org.stillsecure. cobi a. base. donai n. val ues. Prot ocol ' />

12. </ c: dr opDownLi st >
13. <c:dropDownLi st id="incom nglnterface' required='false'

14. val ue=' #{ noni t or Log. | ogRequest . criteria.incom ngl nterface}'>
15. <f:selectltens val ue="#{nonitorlLog. sel ectListForlnterfaces}" />
16. </ c: dr opDownLi st >

17. <c: dropDownLi st id="outgoi nglnterface' required= false'

18. val ue=" #{ noni t or Log. | ogRequest . criteria. outgoi ngl nterface}'>
19. <f:selectltenms val ue="#{nonitorLog. sel ectListForlnterfaces}" />
20. </ c: dr opDownLi st >

21. <c: dropDownLi st id='rul eOption' required="false'

22. val ue=" #{ noni t or Log. | ogRequest . criteria.rul eDbl ndex}' >

23. <f:selectltens val ue="#{nonitorLog. sel ectLi st For Loggi ngRul es}" />

24, </ c: dr opDownLi st >
25. </ c: divi si on>

However, there is one new widget that is unique to search screens. It is the
combination of a drop-down list with a text field. This widget is called
StringSearchCriterion.

The drop-down list is specifically populated with an enum for selecting the type of
string comparison:

contains — matches if the DB field contains the string in the text field

does not contain — matches if the DB field does not contain the string in the
text field

starts with — matches if the DB field starts with the string in the text field
ends with — matches if the DB field ends with the string in the text field
is — matches if the DB field is exactly the string in the text field

is not - matches if the DB field is not the string in the text field

Here is the JSP code for the form widgets on the right side of the criteria section:

1. <c:division id="searchColumTwoCriteria' >

2. <c:textField id=" endDate' required='false'

3. val ue=" #{ noni t or Log. | ogRequest.criteria. endDate}' >

4. <f:converter converterld="converter.Date" />

5. </c:textField>

6. <c:stringSearchCriterion id="sourcel P required='false'

7. val ue=" #{ noni t or Log. | ogRequest.criteria.sourcelP}' />

8. <c:stringSearchCriterion id="destinationlP required='false'

9. val ue=' #{ noni t or Log. | ogRequest . criteri a.destinationlP}' />
10. <c:stringSearchCriterion id="sourcePort' required='false'

11. val ue=" #{ noni t or Log. | ogRequest . criteria.sourcePort}' />

12. <c:stringSearchCriterion id="destinationPort' required='false'
13. val ue=" #{ noni t or Log. | ogRequest.criteria.destinationPort}' />

14. </ c: di vi si on>

The StringSearchCriterion widget takes the data from the enum and the text field and
creates a StringSearchCriterion object from the Cobia
org.stillsecure.cobia.util package. This widget has a built-in converter to create
these objects.

© 2006 - 2007 stillSecure® All rights reserved.

Lastly, here is the JSP code for the search buttons:

View and Search Pages (rev-a) 98

<c:division id="searchButtons' styleC ass='searchNavi gation' >
<ctags:| oadStyl e src='/conponents/styl es/contentButton.css' />
<f:verbati nme<! [CDATA
<ul cl ass="sear chNavi gati on">

]1]1></f:verbatinr
<h: commandLi nk id="search" action="#{nonitorlLog.search}"
styl e ass="cont ent Butt on cont ent Sear chButton" val ue="search"/>
8. <f:verbati nme<! [CDATA[
9.
10.
11.]]></f:verbatine
12. <jstl:choose>
13. <jstl:when test="${nonitorlLog.| ogRequest.criteria.default}">
14. <h: commandLi nk id="reset" action="#{nonitorlLog.reset}"
styl ed ass="cont ent Butt on cont ent Reset Buttonl nactive" val ue="reset"/>
15. </jstl:when>

NooakwhE

16. <j stl:otherw se>

17. <h: commandLi nk id="reset" action="#{nonitorlLog.reset}"
styl ed ass="cont ent Butt on content Reset Button" val ue="reset"/>

18. </jstl:otherw se>

19. </jstl:choose>

20. <f:verbati np<! [CDATA
21. </[li>

22. </ ul >

23.]]></f:verbatinpr

24. </ c: divi sion>

As you can see this JSP code does not use Cobia UI widgets. It uses a combination of
hard-coded HTML, plus standard JSP tag libraries (JSTL) and standard JSF component
such as commandLi nk. Future version of the Cobia UI Framework might include
widgets for this set of buttons.

The Result Set Section

The bottom half of Figure 54 on page 95 shows the result set in a paged table. There
are no built-in widgets for the elements in this section of the screen. Review the JSP
code in the Firewall module at nodul es/ fi rewal | / web/ Moni t or Log. j spx to see how
to recreate this code for you search screens. Also you will need to review the backing

bean code at
nmodul es/firewal | /src/org/stillsecure/cobial/nodul e/firewal|/web/MnitorLog

. j ava to see how the screen object supports the functionality of this screen.

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Reporting Pages (rev-a) 99

Reporting Pages

This section describes how to create reporting screens.

Not designed in Cobia v0.3.

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Help Pages (rev-a) 100

Help Pages

This section describes how to create help screens.

Not designed in Cobia v0.3.

© 2006 - 2007 StillSecure® All rights reserved.

CGl

Dashboard Screens (rev-a) 101

Dashboard Screens

This section describes how to create dashboard screens.

The Purpose of Dashboard Screens

The primary purpose of a Dashboard screen is to present the status of the module's
service. This is usually done with summary data and graphs. Dashboards are the
hardest screens to create because there is no standard way of constructing them.
There are some Cobia widgets that help, but creating these screens is still an art. In
the next couple of pages we will show you how the current Cobia module dashboards
were built.

The Admin Dashboard
Figure 56 shows Admin dashboard.

) usage
Configure L
system CPU Usaga ist hourt System uptime: 1 day, 0:59:15
100 Load averages (minutes): 0.48 (1) 0.13 {5) 0.08 (15)
80 CPU usage: 4%
. . [A s
60 ¥ Y usage: | %
Virtual memory usage: R -
40
root usage: G 000) e
20
fusr usage: G 0) e
o La ") %
RED 1035 hew g (&
jvarflog usage: (4%

Figure 56: The Admin Dashboard

There are two major elements to this dashboard: the CPU usage graph on the left and
the server statistics shows with text and thermometer-style charts on the right. Here
is the JSP code for this content:

1. <c:dataHeadi ng id="resourceUsage" />

2. <c:division id="nonitoring">

3 <a4j :region id="ajax_nonitoring">

4, <a4j :poll id="poller" interval ="5000"

5. onsubm t="return navigation.a4j Submt();"

6 onconpl et e="ref reshG aphs() ;"

7 reRender =" cpuG aph, sysUpti ne, sysLoadAver age, cpuUsage, nenor yUsage, swa
pUsage, df Root , df Usr, df Var, df Var Log"/ >

8.

9. <c: di vi si on id="graphi ng">

10. <c:division id="GR'>

11. <c:graph id="cpuG aph" val ue="#{grapher. cpuG aph}"/>

12. </ c: divi sion>

13. </ c: divi sion>

14.

15. <c:division id="sysStats">

16. <c:datalList id="tinmes' type='definition' styleC ass='dashDat alLi st' >
17. <c:datalistltemid=" sysUptine' itenVal ue='#{systemvetrics.uptinme}' />
18. <c:datalistltemid="'sysLoadAver age'

i tenVal ue=' #{systen\etrics. | oadAverage}' />

© 2006 - 2007 stillSecure® All rights reserved.

G

Dashboard Screens (rev-a) 102

19. </ c: dat alLi st >
20. <f:verbatinme
</f:verbatine
21. <c: divi sion id="usage">
22. <c: percent ageScal e i d="cpuUsage" val ue="#{system\etrics. cpuUsage}"/>
23. <c: per cent ageScal e i d="nenor yUsage"
val ue="#{system\vetri cs. menoryUsage}"/ >
24. <c: per cent ageScal e i d="swapUsage"
val ue="#{system\etrics. swapUsage}"/ >
25. <c: percent ageScal e i d="df Root" val ue="#{system\etrics. df Root}"/>
26. <c: percentageScal e id="df Usr" val ue="#{systenetrics.dfUsr}"/>
27. <c: percentageScal e id="df Var" val ue="#{system\etrics.df vVar}"/>
28. <c: percentageScal e i d="df Var Log" val ue="#{system\etrics. df VarLog}"/ >
29. </ c: divi si on>
30. </ c: divi si on>
31. <f:verbatime<br clear="left"/></f:verbatinp
32

33: </ a4j:regi on>
34. </ c: divi sion>

There is a lot going on here; we will break it down into these elements:

» Headings

« Graphs

« Data lists

* Percentage scales

» AJAX functionality
The Cobia UI widget DataHeading (line 1) creates a section heading for Dashboards.
The text of the heading is provided in the t ext . properti es file:

adm n. Dashboar d. r esour ceUsage. Label =Resour ce usage

The Cobia UI widget Graph (line 11) creates an HTML <i ng> tag and JavaScript code
that includes the r ef r eshGr aphs function. This function iterates over every <i ng>
element within the <di v> tag whose ID is gr aphi ng; lines 8-13. The text of the graph
title is provided in the t ext . properti es file:

adm n. Dashboar d. cpuG aph. Label =CPU Usage (| ast hour)

The Cobia UI widget Datalist (lines 16-19) creates an HTML <dl > structure with text
labels and text data. Each row is created by a single DataListItem subcomponent
(lines 17 and 18). The labels of these elements is provided in the t ext . properties
file:

adm n. Dashboar d. sysUpt i ne. Label =Syst em upt i ne:

adm n. Dashboar d. sysLoadAver age. Label =Load averages (m nutes):

The Cobia UI widget PercentageScale (lines 22-28) creates individual HTML <dI >
structures with text labels and a thermometer-styled graphic that reflects an integer
value from 0 to 100 percent. The labels for these components are handled in with the
Label text attribute.

© 2006 - 2007 stillSecure® All rights reserved.

CGl

All of these components are made dynamic by using AJAX (Asynchronous JavaScript
and XML). The Cobia project uses the A4] (AJAX for JSF) library which is built into the
JBOSS RichFaces component library which is also include. The <a4j : r egi on> tag
(lines 3-33) surround all of the components that need to be AJAX-enabled. The

<adj : pol | > tag (lines 4-7) creates a periodic timer which sends a JSF request to
rerender a chunk of the current page. By default, the whole screen will be rerendered
; however, the <a4j : r egi on> tag will isolate this process to only tags within this
region.

Dashboard Screens (rev-a) 103

The poller uses the onsubni t to modify how the form submission occurs; you need
this. After the request comes back the poller executes the JavaScript in the

onconpl et e attribute; the r ehr eshG aphs function is called to have the graphs pull a
fresh image from the server.

Review the nodul es/ adni n/ web/ st yl es/ admi n. css file to understand how these
elements are styled. Because most of these elements are floated in several locations
in the JSP code we embedded HTML break tags (
); see lines 20 and 31.

The Firewall Dashboard

Figure 57 shows the Firewall dashboard.

Ruk Hits per Minutz Ruke Hits per Minute

Configure Ruke] Biock all G j Ruk: Enable outgoing mal celivery j
firewall
10 1
Monitor
firewall log 50| e : 50
25 [RUBE N SHIRE S R L : o
il | Generate [T o0 100 20 s T T 0 o so0
reports
Ruk Hits per Minuts Rule Hits per Minute
Rule!| Enable all access to public web server -~ Ruled| Enable incorming emall delivery -

80 109,

BQ|]

40| 50

PR ok s SR) oAl 10 {
[T

LR E !
2200 z 0 1:00 E % 78 o

100 40 a0

lcanss

Figure 57: The Firewall Dashboard

This dashboard contains for graphs that display the number of hits per minute for a
specific rule. The rule is selected from the drop-down list above the graph. Here is
the JSP code for this dashboard:

1. <c:dataHeading id='rul eHitCounts' />

2. <c:division id="rul eH tsG aphs' >

3. <adj :region id="ajax_nonitoring >

4, <a4j :poll id="poller"' interval = 5000

5. onsubm t="'"return navi gation. a4j Subm t();"
6. onconpl et e='ref reshG aphs() ;"'

7. reRender ='rul eHi t s1G aph, rul eHits2G aph,
8. rul eH t s3G aph, rul eHits4G aph'
9. action="#{firewal | Hone. refreshG aphs}" />
10.

11. <c: divi sion id="graphing' >

12. <c:division id="rul el >

13. <c: ht ml Tag val ue="h4">

© 2006 - 2007 stillSecure® All rights reserved.

http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/AJAX
http://en.wikipedia.org/wiki/AJAX

Dashboard Screens (rev-a) 104

14. <h: out put Text value="Rule Hits per Mnute"/>
15. </c: htm Tag>
16. <c:dropDownLi st id='rul eH tslG aphSel ect' divC ass='graphSel ect"'
17. val ue="#{firewal | Hme. rul elToG aph}"' >
18. <f:selectltens
val ue=' #{firewal | Hone. sel ect Li st For Count i ngRul es}' / >
19. <a4j :support event='onchange'
20. onsubm t =' navi gati on. a4j Subnit (fal se)"
21. reRender =' rul eHi t s1G aph’
22. aj axSingle="true' />
23. </ c: dr opDownlLi st >
24. <c:division id="rul elScal e' styl ed ass='scal e' >
25. <c:graph id='rul eH ts1G aph' inhibitLabel ="true'
26. val ue="#{firewal | Home. rul e1G aphl ngUr | }' />
27. </ c:division>
28. </ c:divi sion>
29.
30. <c:division id='"rul e2' >
31. <l -- CONTENT FOR RULE #2 -->
32. </ c: di vi si on>
33.
34. <c:division id="rul e3' >
35. <l-- CONTENT FOR RULE #3 -->
36. </ c:divi si on>
37.
38. <c:division id="rul e4' >
39. <! -- CONTENT FOR RULE #4 -->
40. </ c:divi sion>
41. <f:verbatinme<br clear='left'/></f:verbatinp
42.
43. </ c:divi sion>
44. </ a4j : regi on>

45. </ c: di vi si on>
46. <f:verbatinme<br clear="left'/></f:verbatin

The DropDownList component (line 16-23) uses the <a4j : support > tag to issue an
AJAX request when the user selects a item in the drop-down list. To get the graph
title (a <h4> tag) to render above the drop-down list, we use an <a4j : ht ml Tag> tag to
render the <h4> tag and use the i nhi bi t Label attribute on the Graph component. In
the future, we might create a single component for this combination of elements if we
find further uses for it.

The Router Dashboard
Figure 58 shows the Router dashboard.

© 2006 - 2007 stillSecure® All rights reserved.

Dashboard Screens (rev-a) 105

Ethd (bits per second) Eth1 (bils per second)
Configure 2000 W 20800
fouter
TN V\—\\r\\.\' o
1040 W 10408
il | Generate
20 M 20 M)
feports 520 M| 520
W oM 18 D 2 0 2 4 6 & 1 1 4 16 19 2 2 0 2 4 & B 10 12
Last 24 hours i Last 24 hours
0 output — input 0 output — input
Eth2 (bits par second) Eth3 (bits par second)
2080 W 20604
560 M| ‘vf/}“\ 1560
040 M| /‘ 040 M
iinmw mmw
W 16 18 0 2 0 2z & & & 10 12 4o 18 20 2 0 2 4 6 8 10 1
Last 24 hours - Last 24 hours
0 output — input T ostpt — inpat
lcansa

Figure 58: The Router Dashboard

This dashboard contains a graph for every active Ethernet interface on the appliance.

1. <c:dataHeadi ng i d="et hernet Thr oughput" />

2. <adj:region id="ajax_nonitoring"

3. aj axLi st ener ="#{ gr apher. creat el nt erf aceG aphs}">
4. <adj :poll id="poller" interval ="5000"

5. onsubm t ="return navi gation. a4j Subm t();"

6. onconpl et e="refreshG aphs() ;"

7. reRender ="i nterfaceG aphs"/>

8. <c: di vi si on i d="graphi ng">

9. <t:dataList id="interfaceG aphs" |ayout="sinple"

10. var="intf" val ue="#{routerHone.interfaces}">
11. <c: graph id="ethThroughput G aph'

12. val ue="/graphs/#{intf.interface. devi ce}.png"/>
13. </t:datalist>

14. </ c:divi sion>

15. <f:verbatinp<br clear="left' /></f:verbatinr

16. </ a4j :region>

There are two new elements in the page. First, we need to iterate over each interface
and create a Graph element for each. This is accomplished using the <t : dat aLi st >
from the Tomahawk tag library which is part of MyFaces. This component acts like the
JSTL <cor e: f or Each> tag in that it iterates over a collection in the val ue attribute
(line 10) and assigns each item in the collection to the EL variable declared in the var
attribute. This EL variable is then available for use in the val ue attribute of the

<c: graph> tag (lines 11 and 12).

Second, the title for each graph requires a unique string. This is accomplished using a
trick in the t ext . properti es file:

rout er . Dashboar d. et hThr oughput Gr aph. Label ={0} (bits per second)
rout er. Dashboar d. et hThr oughput Gr aph. | abel Args=#{i ntf.interface. devi ce}

The Label attribute uses a message argument {0} in the title. This argument is
populated by the second text attribute, | abel Args. The trick is that this attribute is a

© 2006 - 2007 stillSecure® All rights reserved.

CGl

JSF value binding which is evaluated at run-time to determine the text that is inserted
into the Label attribute.

Dashboard Screens (rev-a) 106

The DHCP Dashboard
Figure 59 shows the DHCP dashboard.

Enmphbysa Scope Usage ilst 24 hours)
Configure N
BHCR Barvar 100% Scopename: Employes Scops
% F IPs in scope: 114
. M B | |
Wi | ‘cenerate G /\/\/ 1Ps used: 85 (58%) (5 reserved)
reports oo
i 1Ps free: 48 [42%)
4 16 16 20 22 0 2 4 6 4 10 12
Wisitar Scope Usage (st 24 hours)
100 Scopename: Visitor Scope
1Ps in scope: 105
e IPs used: 38 [40%) (O reserved)
/\/—/W 1Ps free: 67 (607%)
4 6 18 20 2 0 2 4 6 8 0 12

liesnss

Figure 59: The DHCP Dashboard

The DHCP dashboard is similar to the Admin dashboard in that includes a graph next
to a block of dynamic, textual information. The main difference is that there is a
uniqgue graph/text combination for every DHCP scope defined by the user. Therefore,
this screen must also use the Tomahawk DataList component. Here is the JSP code
for this screen:

1. <c:dataHeadi ng i d="dhcpScopes"/>

2. <c:division id="dashboardScopes" >

3. <a4dj:region id="ajax_nonitoring"

4. aj axLi st ener ="#{ dhcpHore. cr eat eAl | Dashboar dG aphs}" >

5. <a4j :poll id="poller" interval ="5000"

6. onsubm t="return navigation.a4j Submt();"

7. onconpl ete="refreshG aphs() ;"

8. r eRender =" scopeG aphs"/ >

9.

10. <c: di vi si on id="'graphing' >

11. <t:datali st id="scopeG aphs" |ayout="sinple"

12. var ="scope" val ue="#{dhcpHone. scopes}" >

13. <c: division styled ass="scope">

14. <c:division styleC ass="scopeG aph">

15. <c:division id="GR"'>

16. <c: graph id='"scopeUsage'
val ue="/dhcp/ i mages/ dhcp_usage_xybar_#{scope. et hl nt er f ace. devi ce}.j pg"/ >

17. </ c: di vi si on>

18. </ c: division>

19. <c: dataLi st id="dhcpScopeStats" type="definition"

20. styl eC ass=' dashDat aLi st' divStyl eCl ass=' scopeStatistics'>

21. <c:datalistltemid=" scopeNane' itenVal ue="#{scope. name}" />

22. <c:datalListltemid="ipslnScope' itenValue="#{scope.totallPs}"
/>

23. <c:datalListltemid="ipslnUse'

i t enVal ue="#{ nessages|[' dhcp. Dashboard. i psl nUse. Val ue'] [scope. usedl Ps] [scope.
precent Usedl Ps]}" />

24. <c:dataListltemid="ipsFree'
i t enVal ue="#{nessages|[' dhcp. Dashboard. i psFree. Val ue'] [scope. freel Ps] [scope. p
recent Freel Ps]}" />

© 2006 - 2007 stillSecure® All rights reserved.

G

Dashboard Screens (rev-a) 107

25. </ c: dat aLi st >

26. </ c:division>

27. <f:verbatinmr<br clear='left' /></f:verbatine
28. </t:dat aLi st >

29. </ c:di visi on>

30. </ a4j : regi on>
31. <core:if test="%${enpty dhcpHone. scopes}">

32. <f:verbatinr<h4 cl ass="enpt yDashboar d" >

33. ${ messages|[' dhcp. Dashboar d. noScopesMessage'] }
34. </ h4>

35. </f:verbatine

36. </core:if>

37

38: </c:division><!-- END: dashboardScopes -->

The Tomahawk DatalList component (lines 11-29) iterates over every DHCP scope and
generates a Cobia Graph and Cobia DatalList for each scope. Two of the DatalListIitem
components use an odd value binding on lines 23 and 24. The nessage JSF attribute
acts like a Java MessageFor mat object by first looking up the resource key in the first
bracket in the text.properties file. Each bracket following that is an argument to the
message. Here is the text for the dhcp. Dashboar d. i psl nUse. Val ue key:

dhcp. Dashboard. i psl nUse. Val ue={0} ({1} %

The value of scope. usedl Ps is placed in the first argument {0} and the value of
scope. precent Usedl Ps is placed in the second argument {1} .

The JSP code lines 31 through 36 are used to put something in the dashboard if there
are no scopes defined. This prevents the content portion of the screen from being
completely empty.

© 2006 - 2007 stillSecure® All rights reserved.

@ I

Client-side Screen Behavior (rev-a) 108

Client-side Screen Behavior

CoNoh~whE

N
(9]

/>

Some screens may require special client-side behavior. The Cobia UI Framework
supports this by automatically linking to a]S file for each page. For example, Figure
60 shows the EditPassword page in the Admin module.

-

'ﬁ Configure system
r

[Change Web interface password (5

General

+ Current password: ™ ‘
Ethernet interfaces

+ Mew password: () ‘ ‘
Metworks and hosts

« Confirm new password: (@ ‘ ‘
Passwords P -

I_ Change root password (7]

b

Figure 60: The EditPassword Page in the Admin Module

The two checkboxes enable the three text fields below each checkbox. This is a
behavior that goes beyond the standard behavior of the BooleanCheckbox component
so it must be added using JavaScript. Here is the JSP code for the main content of
this page:

:fornW apper id='changePasswords' >

<c: bool eanCheckbox id="ui Password' val ue='#{editPassword. ui Password}' />
<c:subSection i d=' changeU Password' >
<c:secretField id="currentU Pwd' required='true'
val ue=' #{ edi t Passwor d. curr ent Ul Pwd}'
val i dat or =" #{ edi t Passwor d. val i dat eCurrent U Password}" />
<c:secretField id='newd Pnd' required="true'
val ue=' #{ edi t Passwor d. newJl Pwd}'
val i dat or =" #{ edi t Passwor d. val i dat eUl Password}" />
<c:secretField id=" confirnU Pnd' required="true'
val ue=' #{ edi t Passwor d. conf i r mJl Pwd}'
val i dat or =" #{ edi t Passwor d. val i dat eUl Passwor dsMat ch}" />
</ c:subSecti on>

<c: bool eanCheckbox i d="root Password' val ue='#{edi t Password. r oot Passwor d}'

<c: subSecti on id=' changeRoot Password' >
<c:secretField id="current Root Pwd' required='true'
val ue=' #{ edi t Passwor d. cur r ent Root Pwd}"
val i dat or =" #{ edi t Passwor d. val i dat eCur r ent Root Passwor d}" />
<c:secretField id=" newRoot Pwd' required='true’
val ue=' #{ edi t Passwor d. newRoot Pwd} '
val i dat or =" #{ edi t Passwor d. val i dat eRoot Password}" />

© 2006 - 2007 stillSecure® All rights reserved.

G

Client-side Screen Behavior (rev-a) 109

24, <c:secretField id="confirnmRoot Pwd' required='true'

25. val ue=' #{ edi t Passwor d. conf i r TRoot Pwd} "

26. val i dat or ="#{ edi t Passwor d. val i dat eRoot Passwor dsMat ch}" />
27. </ c:subSecti on>

28.

29. </ c: f or MV apper >

When a screen or page is rendered (see the Screen Rendering Process section on page
28), the Cobia UI Framework automatically includes a <scri pt > tag to link to the
page's JS file defined by the path:

/ <nodul el D>/ scri pts/ <screenl D or pagelD>.js

So, for the EditPassword page this JS file would be:

/adm n/ scri pts/ EditPassword. js

Here is the code in this]S file:

1. [**

2. * Enabl es or disables the form subsection controlled by the ui Password
checkbox.

3. *

4. * @aram chkBox -- The x: ui Password checkbox HTM.El enent

5. */

6. function changedU Passwor d(chkBox)

7. {

8. var pwdSubSection = $(' x: changeU Password');

9.

10. i f (chkBox.checked)

11. {

12. enabl eObj ect (pwdSubSecti on) ;

13. }

14. el se

15. {

16. di sabl eoj ect (pwdSubSecti on);

17. }

18. }

19

20. [**

21. * Enabl es or disables the form subsection controlled by the rootPassword
checkbox.

22. %

23. * @aram chkBox -- The x:root Password checkbox HTM_El enent

24. x|

25. functi on changedRoot Passwor d(chkBox)

26. {

27. var pwdSubSection = $(' x: changeRoot Password') ;

28

29. i f (chkBox.checked)

30. {

31. enabl eObj ect (pwdSubSect i on) ;

32. }

33. el se

34. {

35. di sabl enj ect (pwdSubSect i on);

36. }

37.}

38

39. var EditPassword = {

40.

41. [**

42. * Initialize the screen.

43. * This will be the last thing added to the "on-DOM | oad" event handl er

44, */

45, initialize : function ()

© 2006 - 2007 stillSecure® All rights reserved.

Client-side Screen Behavior (rev-a) 110

46. {

47. /1 Initialize the state of the screen

48. changedU Passwor d($(' ui Passwor dCHECKBOX')) ;

49. changedRoot Passwor d($(' r oot Passwor dCHECKBOX')) ;

50. /1 Configure the radi o buttons

51. Event . observe(' ui Passwor dCHECKBOX' , 'click',

52. function () { changedU Passwor d($("' ui Passwor dCHECKBOX')) });
53. Event . observe(' r oot Passwor dCHECKBOX' , 'click',

54. function () { changedRoot Passwor d($(' r oot Passwor dCHECKBOX')) 1});
55. }

56.

57. }

The first two functions handle each checkbox; one for the UI password subsection and
one for the root password subsection. The last chunk of JS code (lines 39-57) define a
JavaScript namespace for this page and in it defines an i niti al i ze function (lines 45-
55). This function initializes the state of the screen by calling the previously defined
JS functions to enable or disable the subsections based upon the state of the
corresponding checkbox (lines 48 and 49). Next theinitialize function uses the
Prototype obser ve function to add these changedXyzPasswor d functions to the
appropriate checkbox element.

Any screen or page that requires this type of initialization must create a namespace
for that screen/page ID and aninitialize function must also be created.

Thisinitialize function must be called after the page's DOM (Document Object
Model) is completely loaded; therefore, the page'sinitial i ze function is added to a
DOM-load event handler. This is also part of the screen rendering process. Here is
the]S code rendered at the bottom of the EditPassword page:

<script |anguage="javascript" type="text/javascript">
if (typeof EditPassword != 'undefined)
{

if (typeof EditPassword.initialize == "'function')
{ addDOMLoadEvent (Edi t Password.initialize); }

NookwhE

</script>

There is a lot you can do with client-side JavaScript. However, using JavaScript with
the Cobia UI Framework requires an understanding of how the component are
rendered in order to determine the IDs of various rendered HTML elements for
complex components. The best way to do this is either by reading the source code of
the renderer classes of the JSF components or by looking at the actual rendered HTML
content.

Dynamic JavaScript

One last comment on JavaScript files. You can use JSPX code to create dynamic
JavaScript. For example, there are components in the DHCP module which require a
JS array of DHCP options which is generated by the web server.

Here is the code for the file nodul es/ dhcp/ web/ scri pt s/ dhcp_opti ons. j spx:

<j sp: r oot
xm ns:jsp="http://java. sun. com JSP/ Page' version="'2.0'
xm ns: f="http://java. sun. conljsf/core'
xm ns:c='http://java. sun.conljsp/jstl/core'>
<j sp:directive. page content Type='text/javascript' />
<f:vi ew>
<f:verbati nme<! [CDATA]
var DHCP = { // START: DHCP nanmespace

ONoOABNE

© 2006 - 2007 stillSecure® All rights reserved.

1.
2.

G

Il

/1 Option type constants

Il

OPTI ON_TYPE_BOCLEAN : O,

OPTI ON_TYPE_BOOLEANS : 1,

OPTI (]\I TYPE UNSI GNED_8 BI T_I NTECGER : 2,
OPTI O\l TYPE UNSI GNED 16 Bl T | NTEGER : 3,
CPTI O\I TYPE UNSI GNED 32 Bl T | NTEGER : 4,
OPTI ON_TYPE_SI GNED 8 BI T_I NTEGER : 5,
OPTI ON_TYPE_SI GNED 16 _BI T_I NTEGER : 6,
OPTI O\I TYPE Sl GNED 32 Bl T | NTEGER : 7,
OPTI ON_TYPE_STRING : 8,

OPTI ON_TYPE_TEXT : 9,

OPTI ON_TYPE_| P_ADDRESS : 10,

OPTI ON_TYPE_| P_ADDRESSES : 11,

OPTI ON_TYPE_| NTEGERS : 12,

OPTI ON_TYPE_2D _ARRAYS : 13, /* not supported */

Client-side Screen Behavior (rev-a) 111

[
/1 Option object constructor
[/
Option : function(code, nanme, description, type)
{
this.code = code;
thi s. name = nane;
this.description = description;
this.type = type;
return this;
b
[/l dobal variable of all DHCP options (used by the Edit/Add DHCP Option
screen)

OPTI ONS_ARRAY : new Array(),

initialize : function()

:]11></f:verbatine
. <c:forEach var="opti onKey" itens="${editOption.all &herOptionKeys}"

var St at us="vs" >

. <f:verbatinp<! [CDATA[DHCP. OPTI ONS_ARRAY[${vs. i ndex}] = new

DHCP. Opt i on(${ opt i onKey. code}, "${opti onKey. user Nane}",
"${opti onKey. user Description}", DHCP.${optionKey.type});]]></f:verbatine

. </ c:forEach>

<f:verbati ne<! [CDATA[
}

.} /1 END: DHCP nanespace

. addDOMLoadEvent (DHCP. i niti al i ze);
.]11></f:verbatinr

. </f:view

. <l'j sp:root>

Most of this code is static content (lines 8-45 and 51-55). This sets up a JS
namespace called DHCP. The code from lines 47 through 49 uses the JSTL f or Each tag
to iterate over every DHCP option from the domain model and create OPTI ONS_ARRAY
elements, one for each option.

This file is included in the JSP files that need this array, such as the AddOption screen.
Here is the JSP code that performs the include:

<c:screen val ue='#{editOption}"' >
<ctags:| oadScri pt src='scripts/dhcp_options.jsf' />

© 2006 - 2007 stillSecure® All rights reserved.

CGBIA

Client-side Screen Behavior (rev-a) 112

3. <l-- the rest of the screen -->
4. </c:screen>

© 2006 - 2007 StillSecure® All rights reserved.

G

Including Raw HTML Content (rev-a) 113

Including Raw HTML Content

We want you to use the Cobia UI component library; however, we recognize that there
will be cases in which you need either raw HTML or a combination of raw HTML with
JSF standard (or third-party) components.

If the HTML you need to include is complete (meaning the complete XML structure is in
place), then you can use the JSF ver bat i mtag. Here is an example:

<f:verbatinm
<h4 cl ass="enpt yDashboar d" >
${ messages[' dhcp. Dashboar d. noScopesMessage' | }
</ h4>
</f:verbatinp

©CoNo O

The <h4> tag is complete; it is started and ended within the ver bat i mtag.

In some cases it is not possible to have complete HTML code within the ver bat i mtag.
Here is an example:

<f:verbati nme<! [CDATA[
<ul cl ass="sear chNavi gati on">

]11></f:verbatinpr
<h: commandLi nk i d="search" acti on="#{nonitorlLog. search}"

styl ed ass="cont ent Butt on cont ent Sear chButton" val ue="search"/>
<f:verbati nme<! [CDATA[

]1></f:verbatine

CoNe OhwbE

In this situation you must use the XML CDATA notation (<! [CDATA[any text]]>)
within the ver bat i mtag.

WARNING: In some cases, the JSF verbatim tag does not work well with AJAX; uses
these techniques at your own risk.

© 2006 - 2007 stillSecure® All rights reserved.

	Purpose
	What the Cobia™ UI Developer's Guide is
	Who Should Use the UI Developer's Guide
	How this Guide Fits in the Cobia Architecture

	Glossary
	Relationship with UI Design
	Design Review
	Module Screen Flows
	Screen Components (Overview)

	Dashboard Screens (Overview)
	Multi-Content Screens (Overview)
	Fullscreen Screens (Overview)

	Module Icons
	Planning Screens
	Basic UI Design Guidelines
	Example: Firewall Module
	Example: DHCP Module

	UI Development Steps

	Screen Model and API
	Screen Components
	Screen Types
	Screen Rendering Process
	Screen Modes
	The Screen API
	Basic Information
	Screen Hierarchy Methods
	Screen Life Cycle Methods

	The Dashboard API
	The Update Screen API
	The Multi-Content Screen API
	The MultiContentScreen Methods
	The Screen Methods
	The UpdateScreen Methods
	Content Page API

	Breadcrumbs and Confirmation

	Multi-Content Screens
	Purpose of Multi-Content Screens
	API Review
	Creating Multi-Content Screen Backing Beans

	Commit Points
	Strategies to Get the Domain Model

	Configuration Pages
	The Purpose of Configuration Pages
	Elements of a Form Field
	Screen Text and Internationalization Support
	Other Text Messages
	Supporting Substitution
	Supporting Multiple Languages

	Screen Buttons
	Content Buttons
	Form Layout Techniques
	Creating Sections

	Displaying Content in Forms
	Domain Modeling Review
	Entity Model Elements
	Value Object Model Elements
	Other Data Structures

	How to Create Configuration Screen Backing Beans
	Using the Backing Bean
	Using the StateInterceptor Utility
	Using a Hybrid Strategy

	Dealing with Entities
	Entity Sets
	Entity Lists

	Dealing with Primitive Data
	Dealing with Boolean Values
	Dealing with Integer Values

	Dealing with Enumerated Types
	The DropDownList Component
	The ImageList Component
	Displaying Enum Values as Text and Icons

	Dealing with Single-String Representation Types
	Dealing with Multiple-String Representation Types
	Dealing with Data Collections
	Dealing with Lists or Sets of Values
	Dealing with Ranges
	Dealing with Lists of Ranges

	Dealing with Union Types
	The Union Type Specification
	The UnionTypeField Component
	The UnionType Component

	View and Search Pages
	The Purpose of View Pages
	The Structure of View Pages
	The Purpose of Search Pages
	The Structure of Search Pages
	The Criterion Section
	The Result Set Section

	Reporting Pages
	Help Pages
	Dashboard Screens
	The Purpose of Dashboard Screens
	The Admin Dashboard
	The Firewall Dashboard
	The Router Dashboard
	The DHCP Dashboard

	Client-side Screen Behavior
	Dynamic JavaScript

	Including Raw HTML Content

